当前位置: 首页 > news >正文

头歌之动手学人工智能-Pytorch 之autograd

目录

第1关:Variable

任务描述

编程要求

测试说明

没有伟大的愿望,就没有伟大的天才。——巴尔扎克开始你的任务吧,祝你成功!

第2关:Variable 属性

任务描述

编程要求

测试说明

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克开始你的任务吧,祝你成功!

第3关:梯度初探

任务描述

编程要求

测试说明

科学的界限就像地平线一样:你越接近它,它挪得越远。——布莱希特开始你的任务吧,祝你成功!

第4关:梯度进阶

任务描述

编程要求

测试说明

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克开始你的任务吧,祝你成功!


第1关:Variable

恭喜大家进入  Pytorch 最为核心的学习——autograd,这是  Pytorch 中区别其他机器学习库的一个重要元素。准备好了吗?让我们一探它的庐山真面目吧!

  • 任务描述

本关任务:本关提供了一个张量变量tensor ,根据所给的张量创建 Variable 变量v,同时要求同学们掌握 Variable 的相关属性,例如如何获得 Variable 的 data 属性。

  • 编程要求

本关涉及的代码文件为 createVariable.py,本次编程任务是补全右侧代码片段中 Begin 至 End 中间的代码,具体要求如下:

根据所给的张量创建 Variable 变量 v。
具体请参见后续测试样例。

  • 测试说明

本关涉及的测试文件为 createVariable.py ,运行用户填写后的程序判断正误。

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错。

请注意输出格式及规范。

以下是测试样例:

测试输入:
预期输出:
Variable containing:
 1  4  2
 3  1  4
[torch.FloatTensor of size 2x3]

没有伟大的愿望,就没有伟大的天才。——巴尔扎克
开始你的任务吧,祝你成功!
import torch
from torch.autograd import Variable
tensor = torch.FloatTensor([[1,4,2],[3,1,4]])#/********** Begin *********/
v = Variable(tensor,requires_grad=True)
#/********** End *********/
print(v)

第2关:Variable 属性

本关将介绍 Variable 属性方面的知识,让同学们对其更加熟悉,便于掌握。

  • 任务描述

本关要求掌握Variable 的基本属性及其意义,如requires_grad属性标记着该Variable 是否需要求导。

本关任务:本关提供了一个32位浮点型的张量 x,要求同学们根据 x创建一个Variable类型的变量 y, y是由 x 的平方计算得到,并输出y的Requires Gradiet属性和Gradient属性。

  • 编程要求

本关涉及的代码文件为attributes.py,本次的编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

创建一个变量  y,由  x 的平方计算得到,并输出;

输出 y 的Requires Gradient属性;

输出 y 的Gradient属性。

具体请参见后续测试样例。

  • 测试说明

测试过程:

本关涉及的测试文件为attributes.py,运行用户填写后的程序判断正误。

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错。

请注意输出格式及规范。

以下是测试样例:

测试输入:
预期输出:

Variable containing:
 1
 4
 9
[torch.FloatTensor of size 3]

Requires Gradient : True 
Gradient : None 

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克
开始你的任务吧,祝你成功!
import torch
from torch.autograd import Variable
import warnings  
# 忽略特定警告  
warnings.filterwarnings("ignore", message="The .grad attribute of a Tensor that is not a leaf Tensor is being accessed.*") x = torch.FloatTensor([1,2,3])
x = Variable(x, requires_grad=True)#/********** Begin *********/
#创建一个变量 y,由 x 的平方计算得到
y = x * x
#按照要求输出y相应的属性
print(y)
print('Requires Gradient : %s ' % (y.requires_grad))
print('Gradient : %s ' % (y.grad))
#/********** End *********

第3关:梯度初探

接下来让我们一探神秘的梯度求导吧!

  • 任务描述

结合上一关卡所介绍的Variable属性,我们将进一步学习Variable的反向传播函数backward,从而计算出其梯度的大小。

本关任务:

本关提供了一个 Variable 类型的变量x,并将x的 requires_grad设置为True,以便后续的求导操作。在 x 基础上进行相应的运算得到y ,在 y的基础上进行运算得到z,令变量out为 z 的平均值,计算out 的梯度并输出x的梯度值。求导计算的步骤如下所示:

  • 编程要求

本关涉及的代码文件为gradient.py,本次编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

在 x 基础上进行运算, y = x + 2;

在 y 基础上进行运算, z = y * y * 3;

令变量out为 z 的平均值并输出;

计算 out 的梯度并输出x的梯度值;

具体请参见后续测试样例。

  • 测试说明

测试过程:

本关涉及的测试文件为gradient.py,运行用户填写后的程序判断正误。

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错。

请注意输出格式及规范。

以下是测试样例:

测试输入:
预期输出:

output:
 Variable containing:
 40.5000
[torch.FloatTensor of size 1]

Variable containing:
 3.0000
 4.5000
 6.0000
 7.5000
[torch.FloatTensor of size 4]

科学的界限就像地平线一样:你越接近它,它挪得越远。——布莱希特
开始你的任务吧,祝你成功!

import torch
from torch.autograd import Variable x = Variable(torch.Tensor(range(4)), requires_grad=True)
#/********** Begin *********/
#在 x 基础上进行运算, y = x + 2
y = x + 2
#在 y 基础上进行运算, z = y * y * 3
z = y * y * 3
#令变量 out 为 z 的平均值并输出
out = z.mean()#计算 out 的梯度并输出x的梯度值
out.backward(retain_graph=True)
print('output:')
print(out.item())print(x.grad)
#/********** End *********

第4关:梯度进阶

在上一关卡中,我们学习了利用.backward ()对Variable 变量进行反向传播求导,本关将介绍另一种求解梯度的方法——torch.autograd.grad。

  • 任务描述

本关任务:

本关提供了Variable 类型的变量x和Variable 类型的变量y,并将x 和y的requires_grad设置为True以便后续的求导操作。在 x和y的基础上进行运算得到z,利用torch.autograd.grad方法求梯度 dz_dx和dz_dy。

  • 编程要求

本关涉及的代码文件为autograd_grad.py,本次编程任务是补全右侧代码片段中Begin至End中间的代码,具体要求如下:

计算 z = x*x + 3*y;

求梯度 dz_dx和dz_dy 并输出;

具体请参见后续测试样例。

  • 测试说明

测试过程:

本关涉及的测试文件为autograd_grad.py,运行用户填写后的程序判断正误;

根据程序的输出判断程序是否正确,若正确则输出下面的预期输出,否则报错;

请注意输出格式及规范。

以下是测试样例:

dz_dx: 
 (Variable containing:
  2   4   6
  8  10  12
[torch.FloatTensor of size 2x3]
,)
dz_dy: 
 (Variable containing:
 3  3  3
 3  3  3
[torch.FloatTensor of size 2x3]
,)

真正的科学家应当是个幻想家;谁不是幻想家,谁就只能把自己称为实践家。 —— 巴尔扎克
开始你的任务吧,祝你成功!
import torch
from torch.autograd import Variablex = Variable(torch.unsqueeze(torch.linspace(1, 6, 6), dim = 1).view(2, 3), requires_grad=True)y = Variable(torch.Tensor(2, 3).uniform_(-1, 1), requires_grad=True)#/********** Begin *********/
#计算 z = x*x + 3*y
z = x*x + 3*y#求dz_dx和dz_dy 并输出
dz_dx = torch.autograd.grad(z, x, grad_outputs=torch.ones_like(z))
dz_dy = torch.autograd.grad(z, y, grad_outputs=torch.ones_like(z))
print("dz_dx: \n",dz_dx)
print("dz_dy: \n",dz_dy)
#/********** End *********/ 

相关文章:

  • 王树森推荐系统公开课 排序05:排序模型的特征
  • 【NLP】将 LangChain 与模型上下文协议 (MCP) 结合使用
  • 华为OD机试真题——模拟工作队列(2025A卷:200分)Java/python/JavaScript/C/C++/GO最佳实现
  • bat 批处理通过拖拽,来获取拖入文件的信息
  • Linux之高效文本编辑利器 —— vim
  • 【动态规划】子数组系列(二)
  • CSP 2024 提高级第一轮(CSP-S 2024)阅读程序第一题解析
  • Typora中文直装版
  • 2025.5.28总结
  • 2. 数据结构基本概念 (2)
  • Uniapp+UView+Uni-star打包小程序极简方案
  • 设计模式-装饰模式
  • Day05
  • 深度解析 Dockerfile 配置:构建高效轻量的FastAPI 应用镜像
  • Docker Desktop无法在windows低版本进行安装
  • JS逆向 QQ音乐sign签名|webpack实战 (上)
  • RocksDB
  • 对比RFX2401C:AT2401C功率放大器的性价比与PIN兼容方案
  • 2025年5月AI科技领域周报(5.19-5.25):大模型多模态突破 具身智能开启机器人新纪元
  • qt ubuntu 20.04 交叉编译
  • 那里可以免费做网站/seo课程培训要多少钱
  • vs2015网站开发教程/促销方案
  • 珠海杰作网站建设网络公司/让手机变流畅的软件下载
  • 帝国cms做网站流程/推广专员
  • 西安牛二网络科技有限公司/seo网站推广报价
  • 网络隐私安全/广告优化