当前位置: 首页 > news >正文

【C/C++】探索单例模式:线程安全与性能优化

文章目录

  • Singleton
    • 1 指针版本
      • Version 1 非线程安全版本
      • Version 2 加锁版本
      • Version 3.1 双重检查锁版本 Atomic+Mutex
      • Version 3.2 双重检查锁版本 Atomic-only
      • Version 3 两种方式对比
    • 2 引用版本
      • Version 1 简单版本 不推荐
      • Version 2 初始化安全版本
      • Version 3 初始化+操作安全版本
      • Explanation
      • Comparison

Singleton

1 指针版本

Version 1 非线程安全版本

class Logger {
public:static Logger *GetInstance() {if (instance == nullptr) {instance = new Logger();}return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:static Logger *instance;Logger() {}
};Logger *Logger::instance = nullptr;

Version 2 加锁版本

增加锁,用于保证线程安全,但是锁开销会影响性能。

class Logger {
public:static Logger *GetInstance() {std::lock_guard<std::mutex> lk(mutex_);if (instance == nullptr) {instance = new Logger();}return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:Logger() {}static Logger *instance;static std::mutex mutex_;
};Logger *Logger::instance = nullptr;
std::mutex Logger::mutex_;

Version 3.1 双重检查锁版本 Atomic+Mutex

class Logger {
public:static Logger* GetInstance() {// First, attempt to load the current instance atomicallyLogger* tmp = instance.load(std::memory_order_acquire);// If the instance is nullptr, create itif (tmp == nullptr) {std::lock_guard<std::mutex> lock(mtx);  // Lock only during initializationtmp = instance.load(std::memory_order_relaxed);  // Check again inside the lockif (tmp == nullptr) {tmp = new Logger();  // Create a new instanceinstance.store(tmp, std::memory_order_release);  // Atomically set the instance}}return tmp;}void Log(const std::string& message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}  // Private constructor to prevent direct instantiationstatic std::atomic<Logger*> instance;  // Atomic pointer to the Singleton instancestatic std::mutex mtx;  // Mutex to protect initialization
};// Initialize the atomic pointer and mutex
std::atomic<Logger*> Logger::instance(nullptr);
std::mutex Logger::mtx;

Version 3.2 双重检查锁版本 Atomic-only

class Logger {
public:static Logger* GetInstance() {// First, attempt to load the current instance atomicallyLogger* tmp = instance.load(std::memory_order_acquire);// If the instance is nullptr, create itif (tmp == nullptr) {tmp = new Logger();  // Create a new instance// Atomically set the instance if no other thread has done soif (!instance.compare_exchange_strong(tmp, tmp)) {delete tmp; // Another thread won the race, delete the temporary instancetmp = instance.load(std::memory_order_acquire); // Reload the instance}}return tmp;}void Log(const std::string& message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}  // Private constructor to prevent direct instantiationstatic std::atomic<Logger*> instance;  // Atomic pointer to the Singleton instance
};// Initialize the atomic pointer to nullptr
std::atomic<Logger*> Logger::instance(nullptr);

Version 3 两种方式对比

  • Only Atomic:

    • Atomic Check: We first check the instance atomically with instance.load. If it’s nullptr, we attempt to create the instance using new.
    • Atomic Set: We use compare_exchange_strong to ensure that only one thread creates the instance. If another thread has already created the instance, it returns the existing one.
    • No Mutex: There is no mutex involved here. The atomic operations ensure thread safety during the initialization phase.
  • Atomic + Mutex:

    • Atomic First Check: The first check of the instance pointer is atomic using instance.load.
    • Mutex Locking: If the instance is nullptr, we lock a mutex (std::mutex mtx) to synchronize access during the actual creation of the instance.
    • Double Check Inside Lock: After acquiring the mutex, we perform another check of the instance. This prevents other threads from creating multiple instances if they were waiting on the mutex.
    • Atomic Set: We use instance.store to atomically set the instance pointer once it’s initialized.

  • Comparison of Effectiveness:
FactorAtomic-onlyAtomic + Mutex
InitializationAtomic operations ensure safe initialization.Mutex ensures exclusive access during initialization.
Post-Initialization AccessLock-free after initialization.Mutex locking still required to access instance.
Performance (High Concurrency)High performance: No lock contention after init.Slower due to mutex locking, even after initialization.
Scalability (Concurrency)Highly scalable: No locks post-initialization.Less scalable: Mutex lock can cause contention.
Memory ConsistencyEnsured via atomic operations and memory_order_acquire/release.Ensured by std::mutex for synchronization.
SimplicitySlightly more complex due to atomic operations.Simpler for developers familiar with mutexes.
  • Atomic-only approach is more effective in high-concurrency environments, especially when you expect many threads accessing the Singleton. Since the initialization is thread-safe and lock-free after the instance is created, it scales much better than the mutex-based approach.

  • Atomic + Mutex approach might be easier to understand for developers familiar with mutexes and might work well in lower-concurrency environments. However, the mutex adds overhead for each access, and if the program has many threads, it will result in contention and slower performance.

  • If you are building a highly concurrent system, prefer the atomic-only approach, as it will perform better with minimal locking overhead.

  • If you have a simpler, lower-concurrency application, using atomic + mutex might be a good trade-off because it provides simplicity and guarantees correct initialization with easy-to-understand synchronization.

2 引用版本

Version 1 简单版本 不推荐

class Logger {
public:static Logger &GetInstance() {return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:static Logger instance;Logger() {}
};Logger Logger::instance;

Version 2 初始化安全版本

c++机制保证初始化安全

class Logger {
public:static Logger& GetInstance() {static Logger instance;return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}
};

Version 3 初始化+操作安全版本

增加操作安全

class Logger {
public:static Logger &GetInstance() {static Logger instance;return instance;}void Log(const std::string &message) {std::lock_guard<std::mutex> lk(mtx);std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}std::mutex mtx;
};

Explanation

初始化过程线程安全原因:

  1. Static Local Variable:

    • In the GetInstance() method, we declare a static local variable instance.

      • static Logger instance; ensures that instance is only created once and persists for the entire lifetime of the program.
  2. First-Time Initialization:

    • The first time GetInstance() is called, the static variable instance is initialized. This is where the thread-safety comes into play. The C++11 standard guarantees that the initialization of a static local variable will be thread-safe.
    • If multiple threads try to call GetInstance() simultaneously, only one thread will initialize the instance. The other threads will wait until the initialization is complete, and then they will all see the same instance when they call GetInstance() again.
  3. Thread-Safe Static Initialization:

    • The C++11 guarantee ensures that even if multiple threads try to initialize the instance simultaneously, the static variable will only be initialized once. The other threads will see the already initialized object, which eliminates any race condition.
  4. Post-Initialization Access:

    • After initialization, the reference instance is ready for access, and since it is a static variable, it is always available. There is no locking required for accessing instance after it is initialized, making access very efficient.
  5. No Mutex or Atomic Operations:

    • Since the C++ standard guarantees thread-safe initialization of static local variables, there is no need for additional synchronization mechanisms such as mutexes or atomic operations. The instance is initialized only once, and once it is initialized, it is ready for fast, lock-free access.

Comparison

FactorAtomic-only SingletonAtomic + Mutex SingletonReference Singleton
Thread-Safe InitializationThread-safe initialization using atomic operations.Thread-safe initialization using atomic + mutex locking.Guaranteed thread-safe initialization due to static storage duration in C++11.
Memory ManagementRequires dynamic memory allocation (using new).Requires dynamic memory allocation (using new).No dynamic memory allocation; the instance is static.
Post-Initialization AccessLock-free after initialization, very fast.Mutex still required for each access.Lock-free after initialization, very fast.
Performance (High Concurrency)Very high performance due to lock-free access.Lower performance due to mutex lock overhead.Very high performance with no locking or atomic ops.
Scalability (Concurrency)Highly scalable with minimal contention.Less scalable due to mutex contention.Highly scalable since there’s no contention.
SimplicityMore complex, requires understanding of atomic operations.More complex due to mutex usage and atomic operations.Simpler and more straightforward.
Memory UsageRequires dynamic memory allocation for the Singleton.Requires dynamic memory allocation for the Singleton.No dynamic memory allocation, very efficient.
Lifetime ManagementRequires manual cleanup or reliance on smart pointers.Requires manual cleanup or reliance on smart pointers.Managed automatically by the compiler with static duration.
SafetyThread-safe, but requires careful handling of atomic ops.Thread-safe, but introduces locking overhead.Thread-safe due to the C++ static initialization guarantee, no locking needed.
Use CaseSuitable for high-concurrency, dynamic memory applications where you need to fine-tune memory allocation.Suitable for high-concurrency, but mutex introduces some overhead in high-load

相关文章:

  • SQL数据处理流程
  • 微软正式发布 SQL Server 2025 公开预览版,深度集成AI功能
  • PostgreSQL日常维护
  • Flink SQL 计算实时指标同比的实现方法
  • 云原生安全之PaaS:从基础到实践的技术指南
  • 零基础教程:用 Docker + pgloader 将 MySQL 数据库迁移到 PostgreSQL
  • UE5.6新版本—— 动画光照系统重点更新
  • docker 启动一个python环境的项目
  • 详解鸿蒙仓颉开发语言中的日志打印问题
  • linux查看本机服务器的外网IP命令
  • 系分论文《论软件系统安全分析和应用》
  • Web Workers 使用指南
  • 鸿蒙开发:应用上架第二篇,申请发布证书
  • 攻防世界——Web题 fakebook
  • 锐捷网络设备(交换机、路由器、防火墙)常用命令整理
  • 第3周作业-1层隐藏层的神经网络分类二维数据
  • 如何利用 Conda 安装 Pytorch 教程 ?
  • 小土堆pytorch--神经网络-非线性激活线性层及其他层介绍
  • 物联网相关词汇
  • 【JVM】学习笔记
  • 常德做网站专业公司/沈阳seo团队
  • 自己做网站多少钱/360优化大师官方版
  • 网站建设规划/网站优化的关键词
  • 做视频资源网站有哪些难点/提升seo排名平台
  • 静态网站开发工具/制作网站要多少费用
  • 微网站 源码 免费/企业网站cms