当前位置: 首页 > news >正文

如何使用MATLAB NLP工具箱进行文本聚类

文章目录

  • 前言
  • 一、核心流程与代码实现
  • 二、高级聚类技术
  • 三、评估聚类质量
  • 四、实战案例:新闻聚类
  • 五、优化技巧与注意事项


前言

在 MATLAB 中使用 NLP 工具箱进行文本聚类主要分为数据预处理、特征提取、相似度计算、聚类算法应用和结果分析五个核心步骤。以下是详细教程:


一、核心流程与代码实现

  1. 数据预处理与特征提取
% 加载文本数据
tbl = readtable('documents.csv');% 文本预处理
documents = tokenizedDocument(tbl.Text);
documents = removeStopWords(documents, 'english');  % 移除停用词
documents = stemWords(documents);  % 词干提取% 特征提取(TF-IDF)
bag = bagOfWords(documents);
tfidf = tfidf(bag);  % 计算TF-IDF矩阵
  1. 确定最佳聚类数
% 轮廓系数法确定最佳K值
silhouetteScores = zeros(10, 1);
for k = 2:10idx = kmeans(tfidf, k);silhouetteScores(k) = mean(silhouette(tfidf, idx));
endbestK = find(silhouetteScores == max(silhouetteScores));
fprintf('最佳聚类数: %d\n', bestK);% 可视化轮廓系数
figure
plot(2:10, silhouetteScores(2:10), 'o-', 'LineWidth', 2)
xlabel('聚类数 K')
ylabel('平均轮廓系数')
title('最佳聚类数选择')
grid on
  1. 执行 K-means 聚类
% 使用最佳K值执行聚类
clusterIdx = kmeans(tfidf, bestK);
tbl.Cluster = categorical(clusterIdx);  % 添加聚类标签到表格% 计算每个聚类的中心点
centroids = zeros(bestK, size(tfidf, 2));
for i = 1:bestKcentroids(i,:) = mean(tfidf(clusterIdx==i,:));
end
  1. 分析聚类结果
% 显示每个聚类的代表性关键词
for i = 1:bestK[~, idx] = sort(centroids(i,:), 'descend');topWords = vocabulary(bag)(idx(1:10));  % 每个聚类的前10个关键词fprintf('聚类 %d 关键词: %s\n', i, join(topWords, ', '));
end% 可视化聚类分布
figure
gscatter(tfidf(:,1), tfidf(:,2), clusterIdx, 'rgbcmyk', 'osd^v><')
title('文本聚类结果可视化')
xlabel('特征维度1')
ylabel('特征维度2')
legend('Location', 'best')

二、高级聚类技术

  1. 层次聚类
% 计算余弦相似度矩阵
similarity = cosineSimilarity(tfidf);
distance = 1 - similarity;  % 转换为距离矩阵% 执行层次聚类
linkageMatrix = linkage(distance, 'ward');% 绘制树状图
figure
dendrogram(linkageMatrix, 'Orientation', 'left', 'Labels', tbl.DocumentID)
title('文本层次聚类树状图')
xlabel('距离')% 切割树状图获取聚类
clusterIdx = cluster(linkageMatrix, 'Cutoff', 0.7*max(linkageMatrix(:,3)));
  1. 基于词嵌入的聚类
% 使用预训练词向量
embedding = wordEmbedding(documents, 'NumDimensions', 100);
docVectors = transform(embedding, documents);  % 文档向量化% 聚类词嵌入表示
clusterIdx = kmeans(docVectors, bestK);% t-SNE降维可视化
figure
tsneEmbedding = tsne(docVectors, 'NumDimensions', 2);
gscatter(tsneEmbedding(:,1), tsneEmbedding(:,2), clusterIdx, 'rgbcmyk', 'osd^v><')
title('基于词嵌入的文本聚类可视化')
xlabel('t-SNE维度1')
ylabel('t-SNE维度2')

三、评估聚类质量

  1. 内部评估指标
% 计算轮廓系数
silhouetteVals = silhouette(tfidf, clusterIdx);
avgSilhouette = mean(silhouetteVals);
fprintf('平均轮廓系数: %.4f\n', avgSilhouette);% 计算Calinski-Harabasz指数
chIndex = calinhara(tfidf, clusterIdx);
fprintf('Calinski-Harabasz指数: %.4f\n', chIndex);
  1. 外部评估指标(已知真实标签时)
% 计算纯度
purity = 0;
for i = 1:bestKclusterLabels = tbl.TrueLabel(clusterIdx==i);[~, counts] = histcounts(categorical(clusterLabels));purity = purity + max(counts);
end
purity = purity / height(tbl);
fprintf('聚类纯度: %.4f\n', purity);

四、实战案例:新闻聚类

% 加载新闻数据集
tbl = readtable('news_articles.csv');% 预处理
documents = tokenizedDocument(tbl.Content);
documents = removeStopWords(documents);
documents = stemWords(documents);% 特征提取
bag = bagOfWords(documents);
tfidf = tfidf(bag);% 聚类(假设已知有5类新闻)
numClusters = 5;
clusterIdx = kmeans(tfidf, numClusters);
tbl.Cluster = categorical(clusterIdx);% 分析每个聚类的主题
for i = 1:numClustersclusterDocs = documents(clusterIdx==i);clusterBag = bagOfWords(clusterDocs);[~, idx] = sort(counts(clusterBag), 'descend');topWords = vocabulary(clusterBag)(idx(1:10));fprintf('聚类 %d (主题: %s): %d篇文档\n', ...i, join(topWords(1:3), ', '), sum(clusterIdx==i));
end% 可视化聚类结果
figure
wordcloud(categorical(tbl.Cluster), tbl.Content)
title('新闻聚类词云')

五、优化技巧与注意事项

特征选择:

% 使用信息增益进行特征选择
[~, idx] = informationGain(bag(idxTrain), tbl.Label(idxTrain), 'NumFeatures', 500);
selectedBag = selectFeatures(bag, idx);处理大型数据集:
matlab
% 使用批处理K-means
opts = statset('UseParallel', true);
clusterIdx = kmeans(tfidf, bestK, 'Options', opts, 'Distance', 'cosine');文本相似度度量:
matlab
% 使用余弦相似度代替欧氏距离
clusterIdx = kmeans(tfidf, bestK, 'Distance', 'cosine');

相关文章:

  • 使用SQLite Expert个人版VACUUM功能修复数据库
  • 国标GB28181视频EasyGBS视频监控平台搭建城市交通道路可视化管理/道路视频巡检/应急监控指挥
  • [Java实战]Spring Boot整合Sentinel:流量控制与熔断降级实战(二十九)
  • 音频应用的MediaSession冲突
  • 畅游Diffusion数字人(30):情绪化数字人视频生成
  • 若依项目集成sentinel、seata和shardingSphere
  • arcgispro双击打开没反应怎么办
  • 【华为OD- B卷 - 书籍叠放 200分(python、java、c、c++、js)】
  • 芯片分享之AD976性能介绍
  • CentOS Stream安装MinIO教程
  • 《探索具身智能机器人视觉-运动映射模型的创新训练路径》
  • Liquid Wire 柔性应变传感器:金属凝胶导体 | 仿生肌肉长度监测 | 高精度动作控制
  • 医学影像辅助诊断系统开发教程-基于tensorflow实现
  • 跨境外贸电商供应链一体化ERP管理系统
  • 高级SQL技巧:窗口函数与复杂查询优化实战
  • 龙虎榜——20250520
  • vform自定义表单研究
  • 数组day2
  • 【蓝桥杯嵌入式】【模块】五、ADC相关配置及代码模板
  • HarmonyOS5云服务技术分享--ArkTS开发Node环境
  • 上海科技企业与Google联合打造的AR眼镜亮相美国
  • 给个人信息穿上“防弹衣”,国家网络身份认证申领攻略来了
  • 深一度|有望冲击首轮秀?杨瀚森走出舒适圈站上大舞台
  • 演员辛柏青发讣告:妻子朱媛媛患癌去世
  • 全国治安管理工作视频会召开
  • 外交部:中方支持俄乌直接对话谈判,支持政治解决危机