当前位置: 首页 > news >正文

两种方法求解最长公共子序列问题并输出所有解

最长公共子序列(Longest Common Subsequence, LCS)是动态规划领域的经典问题,广泛应用于生物信息学(如DNA序列比对)、文本差异比对(如Git版本控制)等领域。本文将通过​​自顶向下递归+记忆化​​、​​自底向上动态规划​​以及​​回溯法找所有解​​三种方法,深入剖析LCS问题的求解过程,并提供完整的代码实现与实例验证

1.1 什么是LCS?

给定两个字符串text1和text2,其最长公共子序列定义为:在不改变字符相对顺序的前提下,两个字符串共有的最长字符序列。例如,text1=“abcde”,text2=“ace"的LCS为"ace”,长度为3。

1.2 动态规划的核心思想

动态规划通过​​分解问题​​、​​存储中间状态​​(即子问题的解)来避免重复计算。对于LCS问题,定义状态dp[i][j]表示text1前i个字符与text2前j个字符的LCS长度。状态转移方程如下:

在这里插入图片描述

边界条件为dp[0][j]=0和dp[i][0]=0,即空字符串的LCS长度为0。

算法实现与优化

2.1 自顶向下递归+记忆化(Top-Down)

通过递归分解问题,并用二维数组memo存储已计算的子问题结果,避免重复计算。

int upToDown(string& a, string& b, int m, int n, vector<vector<int>>& memo) {if (m == 0 || n == 0) return 0;if (memo[m][n] != -1) return memo[m][n]; // 记忆化查询if (a[m-1] == b[n-1]) {memo[m][n] = 1 + upToDown(a, b, m-1, n-1, memo);} else {memo[m][n] = max(upToDown(a, b, m-1, n, memo), upToDown(a, b, m, n-1, memo));}return memo[m][n];
}

时间复杂度​​:O(mn),​​空间复杂度​​:O(mn)。

2.2 自底向上动态规划(Bottom-Up)

通过迭代填充二维数组dp,从最小子问题逐步求解最终结果。

void downToUp(string a, string b) {int m = a.length(), n = b.length();vector<vector<int>> dp(m+1, vector<int>(n+1, 0));for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {if (a[i-1] == b[j-1]) {dp[i][j] = dp[i-1][j-1] + 1;} else {dp[i][j] = max(dp[i-1][j], dp[i][j-1]);}}}cout << "LCS长度:" << dp[m][n];
}

优势​​:无需递归栈,适合大规模输入。

回溯法找所有最优解

3.1 回溯原理

基于动态规划表dp,从dp[m][n]反向追踪所有可能的路径。当字符相等时向左上回溯,否则根据dp值选择向上或向左回溯。

void LCS_Backtrack(string& X, string& Y, vector<vector<int>>& dp, int i, int j, string current, vector<string>& result) {if (i == 0 || j == 0) {reverse(current.begin(), current.end());result.push_back(current);return;}if (X[i-1] == Y[j-1]) {current.push_back(X[i-1]);LCS_Backtrack(X, Y, dp, i-1, j-1, current, result);current.pop_back();} else {if (dp[i-1][j] == dp[i][j]) {LCS_Backtrack(X, Y, dp, i-1, j, current, result);}if (dp[i][j-1] == dp[i][j]) {LCS_Backtrack(X, Y, dp, i, j-1, current, result);}}
}

注意​​:由于回溯路径是从后向前构建,最终需要反转字符串。

测试案例 && 完整代码

#include <bits/stdc++.h>
using namespace std;
const int N = 100;// 自底向上
void downToUp(string a, string b) {int al = a.length();int bl = b.length();int D[N][N];for (int i = 1; i <= al; i++) {for (int j = 1; j <= bl; j++) {if (a[i - 1] == b[j - 1]) {D[i][j] = D[i - 1][j - 1] + 1;} else {D[i][j] = max(D[i - 1][j], D[i][j - 1]);}}}cout << "最长公共子序列长度: " << D[al][bl] << endl;
}// 自上向下,传入的二维数组初始化为一
int upToDown(string& a, string& b, int m, int n, vector<vector<int>>& memo) {if (m == 0 || n == 0) return 0; // 递归终止条件if (memo[m][n] != -1) return memo[m][n]; // 计算过直接返回结果if (a[m - 1] == b[n - 1]) {memo[m][n] = 1 + upToDown(a, b, m - 1, n - 1, memo);} else {memo[m][n] = max(upToDown(a, b, m - 1, n, memo), upToDown(a, b, m, n - 1, memo));}return memo[m][n];
}// 3. 回溯法找到所有最长公共子序列
void LCS_Backtrack(string& X, string& Y, vector<vector<int>>& dp, int m, int n, string& current, vector<string>& result) {// 如果到达矩阵的边界,表示一个公共子序列的结束if (m == 0 || n == 0) {result.push_back(current);  // 到达边界,记录一个解return;}// 如果当前字符相等,将字符加入当前子序列,回溯到左上角if (X[m - 1] == Y[n - 1]) {current.push_back(X[m - 1]);  // 字符匹配,添加到当前子序列LCS_Backtrack(X, Y, dp, m - 1, n - 1, current, result);current.pop_back();  // 回溯,移除字符} else {// 如果上方 dp 值等于当前 dp 值,说明从上面来的if (dp[m - 1][n] == dp[m][n]) {LCS_Backtrack(X, Y, dp, m - 1, n, current, result);  // 向上回溯}// 如果左边 dp 值等于当前 dp 值,说明从左边来的if (dp[m][n - 1] == dp[m][n]) {LCS_Backtrack(X, Y, dp, m, n - 1, current, result);  // 向左回溯}}
}int main() {string a, b;cin >> a >> b;int m = a.length();int n = b.length();vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));for (int i = 1; i <= m; ++i) {for (int j = 1; j <= n; ++j) {if (a[i - 1] == b[j - 1]) {dp[i][j] = 1 + dp[i - 1][j - 1];  } else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);  }}}vector<string> result;string current;LCS_Backtrack(a, b, dp, m, n, current, result);cout << "所有的最长公共子序列: " << endl;for (const auto& seq : result) {string re = seq;reverse(re.begin(), re.end());cout << re << endl;}return 0;
}

输入
ABCBDAB
BDCABC
输出
4
所有的最长公共子序列:
BCAB
BDAB

end

相关文章:

  • Android学习总结之算法篇八(二叉树和数组)
  • 可视化图解算法35:在二叉树中找到两个节点的最近公共祖先(二叉树的最近公共祖先)
  • 【LeetCode】删除排序数组中的重复项 II
  • 2025年渗透测试面试题总结-某步在线面试(题目+回答)
  • 开启智能Kubernetes管理新时代:kubectl-ai让操作更简单!
  • ZooKeeper工作机制与应用场景
  • 邻近标记技术:研究蛋白互作的利器(五)
  • base64与图片的转换和预览(高阶玩法)
  • 守护数字家园:个人博客安全防护指南
  • 云服务如何简化物联网设备生命周期(How Cloud Services Simplify IoT Device Lifecycles)?
  • 【Linux修炼手册】Linux开发工具的使用(一):yum与vim
  • 数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
  • DevExpressWinForms-布局之SplitContainerControl
  • 基于CNN与SHAP可解释性分析的神经网络回归预测模型【MATLAB】
  • Python爬虫(21)Python爬虫进阶:Selenium自动化处理动态页面实战解析
  • 基于SpringBoot的校园周边美食探索及分享平台的设计与实现
  • C++函数传值与传引用对比分析
  • 笔试强训——第七周
  • 《面向对象》
  • C29-二维数组应用之找最大值及对应下标
  • 重视体重管理,筑牢健康基石
  • 复旦发文缅怀文科杰出教授裘锡圭:曾提出治学需具备三种精神
  • 重庆党政代表团在沪考察,陈吉宁龚正与袁家军胡衡华共商两地深化合作工作
  • 中国经济新动能|警惕数字时代下经济的“四大极化”效应
  • 外交部:解放军参加红场阅兵体现了中方对历史的尊重和铭记
  • 哈马斯官员:进一步停火谈判毫无意义