Aitken 逐次线性插值
Aitken 逐次线性插值
用 Lagrange 插值多项式 L n ( x ) L_n(x) Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。
令 I i 1 , i 2 , . . . , i n ( x ) I_{{i_1},{i_2},...,i_n(x)} Ii1,i2,...,in(x)表示函数 f ( x ) f(x) f(x)关于节点 x i 1 , x i 2 , ⋅ ⋅ ⋅ , x i n x_{i_1},x_{i_2},\cdotp\cdotp\cdotp,x_{i_n} xi1,xi2,⋅⋅⋅,xin的 n − 1 n-1 n−1 次插值多项式, I i k ( x ) I_{i_k}(x) Iik(x)是零次多项式,记 I i k ( x ) = f ( x i k ) , i 1 , i 2 , ⋅ ⋅ ⋅ , i n I_{i_k(x)}=f(x_{i_k}),i_1,i_2,\cdotp\cdotp\cdotp,i_n Iik(x)=f(xik),i1,i2,⋅⋅⋅,in 均为非负整数。
一般情况,两个k 次插值多项式可通过线性插值得到
k
+
1
k+1
k+1次插值多项式
I
0
,
1
,
⋯
,
k
,
l
(
x
)
=
I
0
,
1
,
⋯
,
k
(
x
)
+
I
0
,
1
,
⋯
,
k
−
1
,
l
(
x
)
−
I
0
,
1
,
⋯
,
k
(
x
)
x
l
−
x
k
(
x
−
x
k
)
I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k)
I0,1,⋯,k,l(x)=I0,1,⋯,k(x)+xl−xkI0,1,⋯,k−1,l(x)−I0,1,⋯,k(x)(x−xk)
这是关于节点 x 0 , ⋅ ⋅ ⋅ , x k , x l x_0,\cdotp\cdotp\cdotp,x_k,x_l x0,⋅⋅⋅,xk,xl的插值多项式。
有
I
0
,
1
,
⋯
,
k
,
l
(
x
i
)
=
I
0
,
1
,
⋯
,
k
(
x
i
)
=
f
(
x
i
)
I_{0,1,\cdots,k,l}(x_i)=I_{0,1,\cdots,k}(x_i)=f(x_i)
I0,1,⋯,k,l(xi)=I0,1,⋯,k(xi)=f(xi)
对于
i
=
0
,
1
,
⋅
⋅
⋅
,
k
−
1
i=0,1,\cdotp\cdotp\cdotp,k-1
i=0,1,⋅⋅⋅,k−1 成立.当
x
=
x
k
x=x_k
x=xk 时,有
I
0
,
1
,
⋯
,
k
,
l
(
x
k
)
=
I
0
,
1
,
⋯
,
k
(
x
k
)
=
f
(
x
k
)
,
I_{0,1,\cdots,k,l}(x_k)=I_{0,1,\cdots,k}(x_k)=f(x_k)\:,
I0,1,⋯,k,l(xk)=I0,1,⋯,k(xk)=f(xk),
当 x = x l x=x_l x=xl时,有
I 0 , 1 , ⋯ , k , l ( x l ) = I 0 , 1 , ⋯ , k ( x l ) + f ( x l ) − I 0 , 1 , ⋯ , k ( x l ) x l − x k ( x l − x k ) = f ( x l ) . I_{0,1,\cdots,k,l}(x_l)=I_{0,1,\cdots,k}(x_l)+\frac{f(x_l)-I_{0,1,\cdots,k}(x_l)}{x_l-x_k}(x_l-x_k)=f(x_l). I0,1,⋯,k,l(xl)=I0,1,⋯,k(xl)+xl−xkf(xl)−I0,1,⋯,k(xl)(xl−xk)=f(xl).
这说明插值多项式 I 0 , 1 , ⋯ , k , l ( x ) = I 0 , 1 , ⋯ , k ( x ) + I 0 , 1 , ⋯ , k − 1 , l ( x ) − I 0 , 1 , ⋯ , k ( x ) x l − x k ( x − x k ) I_{0,1,\cdots,k,l}(x)=I_{0,1,\cdots,k}(x)+\frac{I_{0,1,\cdots,k-1,l}(x)-I_{0,1,\cdots,k}(x)}{x_l-x_k}(x-x_k) I0,1,⋯,k,l(x)=I0,1,⋯,k(x)+xl−xkI0,1,⋯,k−1,l(x)−I0,1,⋯,k(x)(x−xk)满足插值条件,称其为 Aitken 逐次线性插值公式。