积分第二中值定理的证明
1. 定义
f
f
f在
[
a
,
b
]
[a, b]
[a,b]上可积
(1)
g
(
x
)
g(x)
g(x)在
[
a
,
b
]
[a, b]
[a,b]上单调递减,且
∀
x
∈
[
a
,
b
]
,
g
(
x
)
≥
0
\forall x \in [a, b], g(x) \ge 0
∀x∈[a,b],g(x)≥0;
那么
∃
ξ
∈
[
a
,
b
]
,
s
.
t
.
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
g
(
a
)
∫
a
ξ
f
(
x
)
d
x
\exists \xi \in [a, b], \ s.t.\ \int_a^b f(x)g(x)dx = g(a)\int_a^\xi f(x)dx
∃ξ∈[a,b], s.t. ∫abf(x)g(x)dx=g(a)∫aξf(x)dx。
(2)
g
(
x
)
g(x)
g(x)在
[
a
,
b
]
[a, b]
[a,b]上单调递增,且
∀
x
∈
[
a
,
b
]
,
g
(
x
)
≥
0
\forall x \in [a, b], g(x) \ge 0
∀x∈[a,b],g(x)≥0;
那么
∃
ξ
∈
[
a
,
b
]
,
s
.
t
.
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
g
(
b
)
∫
ξ
b
f
(
x
)
d
x
\exists \xi \in [a, b], \ s.t. \ \int_a^bf(x)g(x)dx = g(b)\int_\xi^bf(x)dx
∃ξ∈[a,b], s.t. ∫abf(x)g(x)dx=g(b)∫ξbf(x)dx。
2. 证明
2.1 证明(1)
令
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
,
F
(
a
)
=
0
;
∫
x
i
−
1
x
i
f
(
t
)
d
t
=
F
(
x
i
)
−
F
(
x
i
−
1
)
F(x) = \int_a^x f(t)dt, F(a) = 0; \int_{x_{i-1}}^{x_i} f(t)dt = F(x_i) - F(x_{i-1})
F(x)=∫axf(t)dt,F(a)=0;∫xi−1xif(t)dt=F(xi)−F(xi−1)。
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,则积分上限函数
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a, b]
[a,b]上连续,且在
[
a
,
b
]
[a, b]
[a,b]上有最大值和最小值。
M
=
sup
{
F
(
x
)
:
x
∈
[
a
,
b
]
}
,
m
=
inf
{
F
(
x
)
:
x
∈
[
a
,
b
]
}
M = \sup\{F(x): x \in [a, b]\}, m = \inf\{ F(x): x \in [a, b]\}
M=sup{F(x):x∈[a,b]},m=inf{F(x):x∈[a,b]}。
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上有界;不妨设
∣
f
(
x
)
∣
<
L
,
x
∈
[
a
,
b
]
|f(x)| < L, x \in [a, b]
∣f(x)∣<L,x∈[a,b]。
由于
g
(
x
)
g(x)
g(x)单调,那么
g
(
x
)
g(x)
g(x)可积。
由
g
(
x
)
g(x)
g(x)可积得到,
∀
ϵ
>
0
,
∃
π
:
a
=
x
0
<
x
1
<
⋯
<
x
n
=
b
,
s
.
t
.
∑
i
=
1
n
ω
i
Δ
x
i
<
ϵ
L
\forall \epsilon > 0, \exists \pi: a = x_0 < x_1 < \cdots < x_n = b, \ s.t. \ \sum\limits_{i=1}^n \omega_i \Delta x_i < \frac{\epsilon}{L}
∀ϵ>0,∃π:a=x0<x1<⋯<xn=b, s.t. i=1∑nωiΔxi<Lϵ。
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,可得:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
)
d
x
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
[
g
(
x
)
−
g
(
x
i
−
1
)
+
g
(
x
i
−
1
)
]
d
x
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
[
g
(
x
)
−
g
(
x
i
−
1
)
]
d
x
+
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
i
−
1
)
d
x
\begin{align*} \int_a^b f(x)g(x)dx &= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x)dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i-1}) + g(x_{i-1})]dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i-1})]dx + \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i-1})dx \end{align*}
∫abf(x)g(x)dx=i=1∑n∫xi−1xif(x)g(x)dx=i=1∑n∫xi−1xif(x)[g(x)−g(xi−1)+g(xi−1)]dx=i=1∑n∫xi−1xif(x)[g(x)−g(xi−1)]dx+i=1∑n∫xi−1xif(x)g(xi−1)dx
我们令
I
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
,
I
1
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
[
g
(
x
)
−
g
(
x
i
−
1
)
]
d
x
,
I
2
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
i
−
1
)
d
x
I = \int_a^b f(x)g(x)dx, I_1 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i-1})]dx, I_2 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i-1})dx
I=∫abf(x)g(x)dx,I1=i=1∑n∫xi−1xif(x)[g(x)−g(xi−1)]dx,I2=i=1∑n∫xi−1xif(x)g(xi−1)dx;显然有
I
=
I
1
+
I
2
I = I_1 + I_2
I=I1+I2。
对于
I
1
I_1
I1, 有
I
1
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
≤
∑
i
=
1
n
∣
f
(
x
)
∣
∣
g
(
x
)
−
g
(
x
i
−
1
)
∣
d
x
≤
L
∑
i
=
1
n
∣
g
(
x
)
−
g
(
x
i
−
1
)
∣
d
x
≤
L
∑
i
=
1
n
ω
i
Δ
x
i
<
L
ϵ
L
=
ϵ
I_1 = \int_a^b f(x)g(x)dx \le \sum\limits_{i=1}^n |f(x)||g(x) - g(x_{i-1})|dx \le L\sum\limits_{i=1}^n |g(x) - g(x_{i-1})|dx \le L \sum\limits_{i=1}^n \omega_i \Delta x_i < L \frac{\epsilon}{L} = \epsilon
I1=∫abf(x)g(x)dx≤i=1∑n∣f(x)∣∣g(x)−g(xi−1)∣dx≤Li=1∑n∣g(x)−g(xi−1)∣dx≤Li=1∑nωiΔxi<LLϵ=ϵ, 因此
I
1
=
0
,
I
=
I
2
I_1 = 0, I = I_2
I1=0,I=I2。
对于
I
2
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
i
−
1
)
d
x
=
∑
i
=
1
n
g
(
x
i
−
1
)
∫
x
i
−
1
x
i
f
(
x
)
d
x
I_2= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i-1})dx = \sum\limits_{i=1}^n g(x_{i-1}) \int_{x_{i-1}}^{x_i}f(x)dx
I2=i=1∑n∫xi−1xif(x)g(xi−1)dx=i=1∑ng(xi−1)∫xi−1xif(x)dx, 又
∫
x
i
−
1
x
i
f
(
x
)
d
x
=
F
(
x
i
)
−
F
(
x
i
−
1
)
\int_{x_{i-1}}^{x_i} f(x)dx = F(x_i) - F(x_{i-1})
∫xi−1xif(x)dx=F(xi)−F(xi−1); 因此
I
2
=
∑
i
=
1
n
g
(
x
i
−
1
)
(
F
(
x
i
)
−
F
(
x
i
−
1
)
)
I_2 = \sum\limits_{i=1}^n g(x_{i-1})(F(x_i) - F(x_{i-1}))
I2=i=1∑ng(xi−1)(F(xi)−F(xi−1))。
我们引入阿贝尔变换:
A
i
=
∑
j
=
1
i
a
i
∑
i
=
1
n
a
i
b
i
+
∑
i
=
2
n
A
i
−
1
b
i
=
∑
i
=
1
n
A
i
b
i
∑
i
=
1
n
a
i
b
i
=
∑
i
=
1
n
A
i
b
i
−
∑
i
=
2
n
A
i
−
1
b
i
=
∑
i
=
1
n
A
i
b
i
−
∑
i
=
1
n
−
1
A
i
b
i
+
1
=
A
n
b
n
+
∑
i
=
1
n
−
1
A
i
(
b
i
−
b
i
+
1
)
\begin{align*} A_i = \sum\limits_{j=1}^i a_i \\ \sum\limits_{i=1}^n a_i b_i + \sum\limits_{i=2}^n A_{i-1}b_i = \sum\limits_{i=1}^n A_ib_i\\ \sum\limits_{i=1}^n a_i b_i &= \sum\limits_{i=1}^n A_i b_i - \sum\limits_{i=2}^n A_{i-1}b_i \\ &= \sum\limits_{i=1}^n A_i b_i - \sum\limits_{i=1}^{n-1} A_i b_{i+1}\\ &= A_n b_n + \sum\limits_{i=1}^{n-1} A_i(b_i - b_{i+1})\\ \end{align*}
Ai=j=1∑iaii=1∑naibi+i=2∑nAi−1bi=i=1∑nAibii=1∑naibi=i=1∑nAibi−i=2∑nAi−1bi=i=1∑nAibi−i=1∑n−1Aibi+1=Anbn+i=1∑n−1Ai(bi−bi+1)
将
I
2
I_2
I2作阿贝尔变换得
I
2
=
∑
i
=
1
n
g
(
x
i
−
1
)
(
F
(
x
i
)
−
F
(
x
i
−
1
)
)
=
∑
i
=
1
n
−
1
F
(
x
i
)
(
g
(
x
i
−
1
)
−
g
(
x
i
)
)
+
g
(
x
n
−
1
)
F
(
x
n
)
I_2 = \sum\limits_{i=1}^n g(x_{i-1})(F(x_i) - F(x_{i-1})) = \sum\limits_{i=1}^{n-1}F(x_i)(g(x_{i-1}) - g(x_i)) + g(x_{n-1})F(x_n)
I2=i=1∑ng(xi−1)(F(xi)−F(xi−1))=i=1∑n−1F(xi)(g(xi−1)−g(xi))+g(xn−1)F(xn)。\
由
m
≤
F
(
x
)
≤
M
,
x
∈
[
a
,
b
]
m \le F(x) \le M, x \in [a,b]
m≤F(x)≤M,x∈[a,b], 将
I
2
I_2
I2值放缩不难得到
m
g
(
a
)
≤
I
2
≤
M
g
(
a
)
mg(a) \le I_2 \le Mg(a)
mg(a)≤I2≤Mg(a); 即
I
2
=
η
g
(
a
)
,
η
∈
[
m
,
M
]
I_2 = \eta g(a), \eta \in [m, M]
I2=ηg(a),η∈[m,M]。
由
F
(
x
)
F(x)
F(x)的介值性不难得到,
∃
ξ
∈
[
a
,
b
]
,
s
.
t
.
F
(
ξ
)
=
η
\exists \xi \in [a, b], \ s.t. \ F(\xi) = \eta
∃ξ∈[a,b], s.t. F(ξ)=η, 综上整理可得
∃
ξ
∈
[
a
,
b
]
,
s
.
t
.
g
(
a
)
∫
a
ξ
f
(
x
)
d
x
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
\exists \xi \in [a, b], \ s.t.\ g(a)\int_a^\xi f(x)dx= \int_a^b f(x)g(x)dx
∃ξ∈[a,b], s.t. g(a)∫aξf(x)dx=∫abf(x)g(x)dx。
2.2 证明(2)
令
F
(
x
)
=
∫
x
b
f
(
t
)
d
t
,
F
(
b
)
=
0
;
∫
x
i
−
1
x
i
f
(
t
)
d
t
=
F
(
x
i
−
1
)
−
F
(
x
i
)
F(x) = \int_x^b f(t)dt, F(b) = 0; \int_{x_{i-1}}^{x_i} f(t)dt = F(x_{i-1}) - F(x_{i})
F(x)=∫xbf(t)dt,F(b)=0;∫xi−1xif(t)dt=F(xi−1)−F(xi)。
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,则积分上限函数
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a, b]
[a,b]上连续,且在
[
a
,
b
]
[a, b]
[a,b]上有最大值和最小值。
M
=
sup
{
F
(
x
)
:
x
∈
[
a
,
b
]
}
,
m
=
inf
{
F
(
x
)
:
x
∈
[
a
,
b
]
}
M = \sup\{F(x): x \in [a, b]\}, m = \inf\{ F(x): x \in [a, b]\}
M=sup{F(x):x∈[a,b]},m=inf{F(x):x∈[a,b]}。
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,则
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上有界;不妨设
∣
f
(
x
)
∣
<
L
,
x
∈
[
a
,
b
]
|f(x)| < L, x \in [a, b]
∣f(x)∣<L,x∈[a,b]。
由于
g
(
x
)
g(x)
g(x)单调,那么
g
(
x
)
g(x)
g(x)可积。
由
g
(
x
)
g(x)
g(x)可积得到,
∀
ϵ
>
0
,
∃
π
:
a
=
x
0
<
x
1
<
⋯
<
x
n
=
b
,
s
.
t
.
∑
i
=
1
n
ω
i
Δ
x
i
<
ϵ
L
\forall \epsilon > 0, \exists \pi: a = x_0 < x_1 < \cdots < x_n = b, \ s.t. \ \sum\limits_{i=1}^n \omega_i \Delta x_i < \frac{\epsilon}{L}
∀ϵ>0,∃π:a=x0<x1<⋯<xn=b, s.t. i=1∑nωiΔxi<Lϵ。
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,可得:
∫
a
b
f
(
x
)
g
(
x
)
d
x
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
)
d
x
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
[
g
(
x
)
−
g
(
x
i
)
+
g
(
x
i
)
]
d
x
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
[
g
(
x
)
−
g
(
x
i
)
]
d
x
+
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
i
)
d
x
\begin{align*} \int_a^b f(x)g(x)dx &= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x)dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i}) + g(x_{i})]dx\\ & = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i})]dx + \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i})dx \end{align*}
∫abf(x)g(x)dx=i=1∑n∫xi−1xif(x)g(x)dx=i=1∑n∫xi−1xif(x)[g(x)−g(xi)+g(xi)]dx=i=1∑n∫xi−1xif(x)[g(x)−g(xi)]dx+i=1∑n∫xi−1xif(x)g(xi)dx
我们令
I
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
,
I
1
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
[
g
(
x
)
−
g
(
x
i
)
]
d
x
,
I
2
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
i
)
d
x
I = \int_a^b f(x)g(x)dx, I_1 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)[g(x) - g(x_{i})]dx, I_2 = \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i})dx
I=∫abf(x)g(x)dx,I1=i=1∑n∫xi−1xif(x)[g(x)−g(xi)]dx,I2=i=1∑n∫xi−1xif(x)g(xi)dx;显然有
I
=
I
1
+
I
2
I = I_1 + I_2
I=I1+I2。
对于
I
1
I_1
I1, 有
I
1
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
≤
∑
i
=
1
n
∣
f
(
x
)
∣
∣
g
(
x
)
−
g
(
x
i
)
∣
d
x
≤
L
∑
i
=
1
n
∣
g
(
x
)
−
g
(
x
i
)
∣
d
x
≤
L
∑
i
=
1
n
ω
i
Δ
x
i
<
L
ϵ
L
=
ϵ
I_1 = \int_a^b f(x)g(x)dx \le \sum\limits_{i=1}^n |f(x)||g(x) - g(x_{i})|dx \le L\sum\limits_{i=1}^n |g(x) - g(x_{i})|dx \le L \sum\limits_{i=1}^n \omega_i \Delta x_i < L \frac{\epsilon}{L} = \epsilon
I1=∫abf(x)g(x)dx≤i=1∑n∣f(x)∣∣g(x)−g(xi)∣dx≤Li=1∑n∣g(x)−g(xi)∣dx≤Li=1∑nωiΔxi<LLϵ=ϵ, 因此
I
1
=
0
,
I
=
I
2
I_1 = 0, I = I_2
I1=0,I=I2。
对于
I
2
=
∑
i
=
1
n
∫
x
i
−
1
x
i
f
(
x
)
g
(
x
i
)
d
x
=
∑
i
=
1
n
g
(
x
i
)
∫
x
i
−
1
x
i
f
(
x
)
d
x
I_2= \sum\limits_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x_{i})dx = \sum\limits_{i=1}^n g(x_{i}) \int_{x_{i-1}}^{x_i}f(x)dx
I2=i=1∑n∫xi−1xif(x)g(xi)dx=i=1∑ng(xi)∫xi−1xif(x)dx, 又
∫
x
i
−
1
x
i
f
(
x
)
d
x
=
F
(
x
i
−
1
)
−
F
(
x
i
)
\int_{x_{i-1}}^{x_i} f(x)dx = F(x_{i-1}) - F(x_{i})
∫xi−1xif(x)dx=F(xi−1)−F(xi); 因此
I
2
=
∑
i
=
1
n
g
(
x
i
)
(
F
(
x
i
−
1
)
−
F
(
x
i
)
)
I_2 = \sum\limits_{i=1}^n g(x_{i})(F(x_{i-1}) - F(x_{i}))
I2=i=1∑ng(xi)(F(xi−1)−F(xi))。
对
I
2
I_2
I2作如下变化:
∑
i
=
1
n
g
(
x
i
)
(
F
(
x
i
−
1
)
−
F
(
x
i
)
)
=
∑
i
=
1
n
g
(
x
i
)
F
(
x
i
−
1
)
−
∑
i
=
1
n
g
(
x
i
)
F
(
x
i
)
=
∑
i
=
0
n
−
1
g
(
x
i
+
1
)
F
(
x
i
)
−
∑
i
=
1
n
g
(
x
i
)
F
(
x
i
)
=
g
(
x
1
)
F
(
x
0
)
+
∑
i
=
1
n
−
1
(
g
(
x
i
+
1
)
−
g
(
x
i
)
)
F
(
x
i
)
−
g
(
x
n
)
F
(
x
n
)
(
x
n
=
b
,
F
(
x
n
)
=
F
(
b
)
=
0
)
=
g
(
x
1
)
F
(
x
0
)
+
∑
i
=
1
n
−
1
(
g
(
x
i
+
1
)
−
g
(
x
i
)
)
F
(
x
i
)
\begin{align*} \sum\limits_{i=1}^n g(x_{i})(F(x_{i-1}) - F(x_i)) &= \sum\limits_{i=1}^n g(x_i)F(x_{i-1}) - \sum\limits_{i=1}^n g(x_i)F(x_i) \\ &= \sum\limits_{i=0}^{n-1} g(x_{i+1})F(x_i) - \sum\limits_{i=1}^{n} g(x_i)F(x_i) \\ &= g(x_1)F(x_0) + \sum\limits_{i=1}^{n-1} (g(x_{i+1}) - g(x_i))F(x_i) - g(x_n)F(x_n) \quad (x_n = b, F(x_n) = F(b) = 0)\\ &= g(x_1)F(x_0) + \sum\limits_{i=1}^{n-1} (g(x_{i+1}) - g(x_i))F(x_i) \end{align*}
i=1∑ng(xi)(F(xi−1)−F(xi))=i=1∑ng(xi)F(xi−1)−i=1∑ng(xi)F(xi)=i=0∑n−1g(xi+1)F(xi)−i=1∑ng(xi)F(xi)=g(x1)F(x0)+i=1∑n−1(g(xi+1)−g(xi))F(xi)−g(xn)F(xn)(xn=b,F(xn)=F(b)=0)=g(x1)F(x0)+i=1∑n−1(g(xi+1)−g(xi))F(xi)
由
m
≤
F
(
x
)
≤
M
,
x
∈
[
a
,
b
]
m \le F(x) \le M, x \in [a,b]
m≤F(x)≤M,x∈[a,b], 将
I
2
I_2
I2值放缩不难得到
m
g
(
b
)
≤
I
2
≤
M
g
(
b
)
mg(b) \le I_2 \le Mg(b)
mg(b)≤I2≤Mg(b); 即
I
2
=
η
g
(
a
)
,
η
∈
[
m
,
M
]
I_2 = \eta g(a), \eta \in [m, M]
I2=ηg(a),η∈[m,M]。
由
F
(
x
)
F(x)
F(x)的介值性不难得到,
∃
ξ
∈
[
a
,
b
]
,
s
.
t
.
F
(
ξ
)
=
η
\exists \xi \in [a, b], \ s.t. \ F(\xi) = \eta
∃ξ∈[a,b], s.t. F(ξ)=η, 综上整理可得
∃
ξ
∈
[
a
,
b
]
,
s
.
t
.
g
(
b
)
∫
ξ
b
f
(
x
)
d
x
=
∫
a
b
f
(
x
)
g
(
x
)
d
x
\exists \xi \in [a, b], \ s.t.\ g(b)\int_\xi^b f(x)dx= \int_a^b f(x)g(x)dx
∃ξ∈[a,b], s.t. g(b)∫ξbf(x)dx=∫abf(x)g(x)dx。