AQS 等待队列中的线程自旋多少次后挂起?
以 ReentrantLock#lock() 的非公平锁实现为例
结论:节点在加入等待队列后会进行两次自旋,获取不到锁后线程挂起,等待前驱节点唤醒。
此外,AQS 在节点加入队列前也会多次尝试获取资源,通过以上方式,在高并发场景中很好的平衡了 长时间自旋的开销 和 线程阻塞的性能损耗(频繁的上下文切换)。
核心代码:
// AbstractQueuedSynchronizer
// 线程直接获取资源失败,加入等待队列,通过自旋 + 阻塞获取锁
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
// 自旋操作,for 循环中并没有明确的自旋次数,答案藏在 shouldParkAfterFailedAcquire() 中
for (;;) {
final Node p = node.predecessor();
// 检查是否能获取资源
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 检查是否需要阻塞
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// AbstractQueuedSynchronizer
// 检查线程是否需要阻塞
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// SIGNAL 状态表明应该阻塞
if (ws == Node.SIGNAL)
return true;
// 对应的节点状态是 CANCELLED,直接跳过
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 剩余的情况都会将前驱节点的状态置为 SIGNAL
// 这样在下一次自旋时就会返回 true,进入阻塞,也就是自旋两次的由来
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
完整加锁链路:
// ReentrantLock
public void lock() {
sync.lock();
}
// ReentrantLock#Sync
abstract void lock();
// ReentrantLock#NonfairSync
final void lock() {
// 资源空闲时直接获取
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
// 资源被占用时
acquire(1);
}
// AbstractQueuedSynchronizer
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
// ReentrantLock#NonfairSync
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
// ReentrantLock#Sync
// 该方法做了两件事情:资源空闲时获取资源、当前线程重入获取资源(ReentrantLock 是可重入锁)
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// AbstractQueuedSynchronizer
// 线程直接获取资源失败,加入等待队列,通过自旋 + 阻塞获取锁
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
// 自旋操作,for 循环中并没有明确的自旋次数,答案藏在 shouldParkAfterFailedAcquire() 中
for (;;) {
final Node p = node.predecessor();
// 检查是否能获取资源
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 检查是否需要阻塞
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// AbstractQueuedSynchronizer
// 检查线程是否需要阻塞
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// SIGNAL 状态表明应该阻塞
if (ws == Node.SIGNAL)
return true;
// 对应的节点状态是 CANCELLED,直接跳过
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 剩余的情况都会将前驱节点的状态置为 SIGNAL
// 这样在下一次自旋时就会返回 true,进入阻塞,也就是自旋两次的由来
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}