当前位置: 首页 > wzjs >正文

新疆政务网站建设品牌营销网站建设

新疆政务网站建设,品牌营销网站建设,有什么做木工的网站,wordpress 食谱网站什么是逻辑回归? 逻辑回归(Logistic Regression)是一个用于分类问题的统计学模型,尽管名字里有“回归”二字,它其实是用来做分类的,不是做数值预测的。 通俗易懂的理解 我们可以通过一个简单的例子来理解…

什么是逻辑回归?

逻辑回归(Logistic Regression)是一个用于分类问题的统计学模型,尽管名字里有“回归”二字,它其实是用来做分类的,不是做数值预测的。

通俗易懂的理解

我们可以通过一个简单的例子来理解逻辑回归。

例子:判断一个学生是否能通过考试

假设你是一个老师,想要通过学生的学习时间(每周学习的小时数)来预测他们是否能够通过考试(通过或不通过)。为了让问题更简单,我们假设一个学生的学习时间和是否通过考试之间存在某种关系。也就是说,学习时间越多,学生通过考试的几率就越大。

我们可以把这个问题转化为分类问题:

  • 学生通过考试:1
  • 学生没有通过考试:0

逻辑回归是如何工作的?

逻辑回归通过一个公式来预测一个学生通过考试的概率:

  • 假设有一个学生,每周学习了5个小时,逻辑回归模型会根据历史数据计算出他通过考试的概率,输出一个值在0和1之间。如果概率大于0.5,我们认为他通过考试;如果小于0.5,我们认为他没有通过考试。

逻辑回归的核心思想是概率,它预测的是某个事件发生的概率,因此它的输出值是一个介于0到1之间的数字,表示事件发生的可能性。

公式:

逻辑回归的数学公式是:

在这里插入图片描述
其中:

  • P(y = 1 | x)) 是事件发生的概率(例如学生通过考试的概率)。
  • w0, w1 是模型的参数,模型会根据历史数据来学习这些参数。
  • x 是输入特征(例如学习时间)。

这个公式是 Sigmoid函数,它会将任何一个输入值映射到0和1之间。

举个具体的例子

假设我们有以下的数据集:

学习时间(小时)是否通过考试(0或1)
10
20
30
41
51
61

我们要根据这些数据来训练一个逻辑回归模型,预测一个学生学习5个小时是否能通过考试。

代码示例(Python)

我们可以使用 scikit-learn 库来实现逻辑回归。首先,你需要安装 scikit-learn

pip install scikit-learn

接下来是代码:

import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from matplotlib import rcParams# 设置字体为支持中文的字体
rcParams['font.family'] = 'SimHei'
rcParams['axes.unicode_minus'] = False# 学习时间(小时)和考试结果(通过或不通过)
X = np.array([[1], [2], [3], [4], [5], [6]])  # 学习时间
y = np.array([0, 0, 0, 1, 1, 1])  # 是否通过考试# 创建逻辑回归模型
model = LogisticRegression()# 训练模型
model.fit(X, y)# 使用模型预测学习5小时的学生通过考试的概率
probability = model.predict_proba([[5]])[0, 1]  # 获取通过考试的概率# 输出概率
print(f"学习5小时的学生通过考试的概率是:{probability:.2f}")# 可视化数据
plt.scatter(X, y, color='red', label='实际数据')
plt.plot(X, model.predict_proba(X)[:, 1], color='blue', label='逻辑回归预测概率')
plt.xlabel('学习时间(小时)')
plt.ylabel('通过考试(0或1)')
plt.legend()
plt.show()

代码解释:

  1. 数据准备:X 是学习时间的数据,y 是是否通过考试的标签(0表示不通过,1表示通过)。
  2. 创建模型:LogisticRegression()创建了一个逻辑回归模型。
  3. 训练模型:model.fit(X, y) 通过数据 X 和 y 来训练模型。
  4. 预测:model.predict_proba([[5]])会返回一个数组,表示学习5小时学生通过考试的概率。我们取数组中的第二个值(通过考试的概率,第一个值是未通过的概率)。
  5. 可视化:我们用红色点表示实际数据,蓝色曲线表示逻辑回归模型预测的概率。

输出示例:

学习5小时的学生通过考试的概率是:0.84

在这里插入图片描述

解释结果:

  • 经过训练后,模型会输出一个概率值,例如0.84,表示学习5小时的学生有84%的概率通过考试。
  • 通过这类概率预测,我们可以做出决策,比如设定一个阈值(比如0.5),如果概率大于0.5,就认为学生通过考试;如果小于0.5,就认为学生没有通过考试。

总结:

  • 逻辑回归是一个用于分类的问题,它的输出是一个概率值。
  • 它可以帮助我们预测某个事件发生的概率,例如预测学生是否通过考试。
  • 逻辑回归的核心是 Sigmoid 函数,它会把预测值压缩到0和1之间。

希望这个例子和代码能帮助你更好地理解逻辑回归!

http://www.dtcms.com/wzjs/313142.html

相关文章:

  • 厦门的网站建设公司哪家好网络培训心得体会5篇
  • 疫情最新数据消息广西某网站seo诊断分析和优化方案
  • 怎么自己做企业网站百度首页排名优化价格
  • 新站seo竞价常用的网站推广方法
  • 深圳网站建设公司排行榜企业文化
  • 郑州给公司做网站的公司重庆搜索引擎seo
  • 做网页要钱吗广东短视频seo营销
  • 生日祝福网站开发域名购买哪个网站好
  • 商城app定制开发辽阳网站seo
  • html网站模板 淘宝商城北京网站制作推广
  • 建官网需要多少钱汕头seo排名
  • 网站首页专题怎么做软文广告范例大全
  • 网站语言编程站长网站
  • 太原建网站自建站seo如何做
  • 做娃衣的布料去哪个网站独立站seo实操
  • 暴走漫画网站建设中模板2345纯净版推广包
  • 建个免费的销售网站好口碑营销策略
  • 网站学什么国际机票搜索量大涨
  • dedecms 做的医院网站优速网站建设优化seo
  • wordpress 文章引用seo公司外包
  • 网站建设法语fba欧美专线
  • 书法网站建设欧美网站建设
  • 外贸网站建设规划百度关键词流量查询
  • 成都企业网站维护百度知道首页网
  • 网络品牌是什么福州seo网址优化公司
  • 云南网站开发网络公司网页设计与制作案例教程
  • 1688批发网官网首页seo监控系统
  • 网站建设须知想做app推广项目在哪找
  • 合肥做网站排名百度一下 你就知道首页官网
  • 王者荣耀官方网站技能培训