当前位置: 首页 > wzjs >正文

做网站显示不同字体网站排名监控工具

做网站显示不同字体,网站排名监控工具,电脑上如何更新wordpress,网站搭建制作利用ultralytics仓库,复现RT-DETR官方实验环境。 使用基于ResNet50和ResNet101的RT-DETR。 目录 一 RT-DETR的网络结构 1 编码器结构 2 RT-DETR 3 CCFF中的融合块 4 实验结果 二 RT-DETR的安装/训练/推理/验证/导出模型 1 安装 2 配置文件 3 训练 4 推理 …

利用ultralytics仓库,复现RT-DETR官方实验环境。

使用基于ResNet50和ResNet101的RT-DETR。

目录

一 RT-DETR的网络结构

1 编码器结构

2 RT-DETR

3 CCFF中的融合块

4 实验结果

二 RT-DETR的安装/训练/推理/验证/导出模型

1 安装

2 配置文件

3 训练

4 推理

5 验证

6 导出模型



一 RT-DETR的网络结构

论文题目:DETRs Beat YOLOs on Real-time Object Detection

论文地址http://arxiv.org/pdf/2304.08069

代码地址DETRs Beat YOLOs on Real-time Object Detection

【摘要】YOLO系列由于在速度和精度之间进行了合理的权衡,已经成为最流行的实时目标检测框架。然而,我们观察到YOLOs的速度和准确性受到NMS的负面影响。最近,端到端的基于Transformer的检测器( Transformer-based detector,DETR )为消除NMS提供了一种替代方案。然而,高昂的计算成本限制了它们的实用性,阻碍了它们充分发挥排除NMS的优势。本文提出了第一个实时端到端目标检测器RT-DETR ( Real-Time DEtection TRansformer )来解决上述问题。借鉴先进的DETR,我们分两步构建RT-DETR:第一步在保持精度的同时提高速度,第二步在保持速度的同时提高精度。具体来说,设计了一个高效的混合编码器,通过解耦尺度内相互作用和跨尺度融合来快速处理多尺度特征,以提高速度。然后,提出了不确定性最小查询选择,为解码器提供高质量的初始查询,从而提高准确性。此外,RT-DETR通过调整解码器层数来支持灵活的速度调整,以适应各种场景而无需重新训练。我们的RT-DETR-R50 / R101在COCO上达到了53.1% / 54.3%的AP,在T4 GPU上达到了108 / 74 FPS,在速度和精度上都优于先前先进的YOLOs。此外,RT-DETR-R50比DINO-R50在准确率上提高了2.2% AP,在FPS上提高了约21倍。经过Objects365预训练后,RTDETR-R50 / R101取得了55.3% / 56.2%的AP。

综上,RT-DETR模型建立在于两个关键创新:

高效混合编码器:通过解耦内部尺度交互和跨尺度融合来处理多尺度特征。这种设计显著降低了计算负担,同时保持了高性能,实现了实时目标检测。

②提出了不确定性最小的查询选择,为解码器提供高质量的初始查询,从而提高准确率。

1 编码器结构

下图是每个变体的编码器结构。SSE表示单尺度Transformer编码器,MSE表示多尺度Transformer 编码器,CSF表示跨尺度融合。AIFI和CCFF是设计的混合编码器的两个模块。

2 RT-DETR

下图为RT-DETR概述。将主干最后三个阶段的特征输入到编码器中。高效混合编码器通过基于注意力的尺度内特征交互(AIFI)和基于cnn的跨尺度特征融合(CCFF)将多尺度特征转化为图像特征序列。然后,最小不确定性查询选择固定数量的编码器特征作为解码器的初始对象查询。最后,具有辅助预测头的解码器迭代优化对象查询以生成类别和框

3 CCFF中的融合块

下图为CCFF中的融合块。

4 实验结果

二 RT-DETR的安装/训练/推理/验证/导出模型

1 安装

git clone https://github.com/sunsmarterjie/yolov12cd yolov12conda create -n yolov12 python=3.11# 输入y,继续。激活环境。conda activate yolov12pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simplepip install -e .

2 配置文件

  • rtdetr-l.yaml
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics RT-DETR-l hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 48]] # 0-P2/4- [-1, 6, HGBlock, [48, 128, 3]] # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8- [-1, 6, HGBlock, [96, 512, 3]] # stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [192, 1024, 5, True, True]]- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0- [[-1, 17], 1, Concat, [1]] # cat Y4- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1- [[-1, 12], 1, Concat, [1]] # cat Y5- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
  • rtdetr-resnet50.yaml
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics RT-DETR-ResNet50 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]backbone:# [from, repeats, module, args]- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 7- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9- [[-2, -1], 1, Concat, [1]]- [-1, 3, RepC3, [256]] # 11- [-1, 1, Conv, [256, 1, 1]] # 12- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0- [[-1, 12], 1, Concat, [1]] # cat Y4- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1- [[-1, 7], 1, Concat, [1]] # cat Y5- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
  • rtdetr-resnet101.yaml
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics RT-DETR-ResNet101 hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 1024]backbone:# [from, repeats, module, args]- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 7- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9- [[-2, -1], 1, Concat, [1]]- [-1, 3, RepC3, [256]] # 11- [-1, 1, Conv, [256, 1, 1]] # 12- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0- [[-1, 12], 1, Concat, [1]] # cat Y4- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1- [[-1, 7], 1, Concat, [1]] # cat Y5- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
  • rtdetr-x.yaml
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license# Ultralytics RT-DETR-x hybrid object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/rtdetr
# Task docs: https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]x: [1.00, 1.00, 2048]backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 64]] # 0-P2/4- [-1, 6, HGBlock, [64, 128, 3]] # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8- [-1, 6, HGBlock, [128, 512, 3]]- [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16- [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32- [-1, 6, HGBlock, [512, 2048, 5, True, False]]- [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4head:- [-1, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 14 input_proj.2- [-1, 1, AIFI, [2048, 8]]- [-1, 1, Conv, [384, 1, 1]] # 16, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [10, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 18 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 3, RepC3, [384]] # 20, fpn_blocks.0- [-1, 1, Conv, [384, 1, 1]] # 21, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [4, 1, Conv, [384, 1, 1, None, 1, 1, False]] # 23 input_proj.0- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 3, RepC3, [384]] # X3 (25), fpn_blocks.1- [-1, 1, Conv, [384, 3, 2]] # 26, downsample_convs.0- [[-1, 21], 1, Concat, [1]] # cat Y4- [-1, 3, RepC3, [384]] # F4 (28), pan_blocks.0- [-1, 1, Conv, [384, 3, 2]] # 29, downsample_convs.1- [[-1, 16], 1, Concat, [1]] # cat Y5- [-1, 3, RepC3, [384]] # F5 (31), pan_blocks.1- [[25, 28, 31], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

3 训练

yolo detect train data=coco128.yaml model=cfg/models/rt-detr/rtdetr-resnet50.yaml epochs=100 batch=16 imgsz=640 device=cpu 

4 推理

yolo task=detect mode=predict model=best.pt source=test.jpg device=cpu

5 验证

yolo task=detect mode=val model=best.pt data=coco128.yaml device=cpu

6 导出模型

yolo task=detect mode=export model=best.pt format=onnx  

至此,本文的内容就结束了。

http://www.dtcms.com/wzjs/31272.html

相关文章:

  • 做网站管理员需要哪些知识国内好用的搜索引擎
  • 响应式布局网站尺寸南京最新消息今天
  • 鲜花网站建设规模设想入门seo技术教程
  • 北京建网站开发西地那非片多少钱一盒
  • 做灯箱到哪个网站找业务谷歌浏览器下载安装2021最新版
  • 有哪些好的建站平台浏览器大全网站
  • 好的网站设计制作网红营销
  • 创业计划书(大学生版)seo工具下载
  • 做网站开通手机验证功能百度官网下载安装到桌面上
  • 婚介 东莞网站建设南宁seo服务优化
  • 推广计划标题不允许重复南京百度推广优化排名
  • 南京网站的优化百度链接收录提交入口
  • 做游戏音频下载网站地推是什么
  • 网站设计线框图百度热搜榜小说排名
  • 网站客服系统交互设计重庆seo网页优化
  • 网页版梦幻西游手游关键词优化公司如何选择
  • 网站分析数据互联网广告投放代理公司
  • 凤凰一级a做爰片免费网站上海网站seoseodian
  • 晋江网站建设公司哪家好网页搜索排名提升
  • 郑州网站建站怎么自己做一个网页
  • 有了域名和空间怎么做网站最新国际新闻50条简短
  • 爱站网长尾奶茶网络营销策划方案
  • 全国工商企业查询网官网长沙网站推广seo
  • b2b网站如何做推广长尾关键词爱站
  • 找网站做任务领q币seo 优化教程
  • 哪些网站可以做百科参考资料可以营销的十大产品
  • 长治企业网站建设价格武汉seo网站推广
  • 抖音关键词排名优化软件搜索引擎seo排名优化
  • app界面设计模板素材免费seo标题关键词优化
  • 我想注册一个做门窗的网站应该怎样做seo服务销售招聘