当前位置: 首页 > wzjs >正文

做网站需学什么条件百度云网盘资源搜索

做网站需学什么条件,百度云网盘资源搜索,网页版梦幻西游藏宝阁,有什么做网兼的网站下面给出基于“切比雪夫距离”(Chebyshev 距离)之和的高效 O(nm) 解法。核心思想是把 ∑ u 1 n ∑ v 1 m max ⁡ ( ∣ u − i ∣ , ∣ v − j ∣ ) \sum_{u1}^n\sum_{v1}^m\max\bigl(|u-i|,|v-j|\bigr) u1∑n​v1∑m​max(∣u−i∣,∣v−j∣) 拆成两个…

下面给出基于“切比雪夫距离”(Chebyshev 距离)之和的高效 O(nm) 解法。核心思想是把

∑ u = 1 n ∑ v = 1 m max ⁡ ( ∣ u − i ∣ , ∣ v − j ∣ ) \sum_{u=1}^n\sum_{v=1}^m\max\bigl(|u-i|,|v-j|\bigr) u=1nv=1mmax(ui,vj)

拆成两个一维前缀和问题:

  1. 定义坐标变换

p = u + v , q = u − v p = u+v,\quad q = u-v p=u+v,q=uv

可以证明

max ⁡ ( ∣ u − i ∣ , ∣ v − j ∣ ) = ∣ ( u + v ) − ( i + j ) ∣ + ∣ ( u − v ) − ( i − j ) ∣ 2 \max(|u-i|,|v-j|)\;=\;\frac{\,| (u+v)-(i+j)| + |(u-v)-(i-j)|\,}{2} max(ui,vj)=2(u+v)(i+j)+(uv)(ij)

因此把二维和转化为

S i , j = ∑ u , v max ⁡ ( ∣ u − i ∣ , ∣ v − j ∣ ) = 1 2 ( ∑ u , v ∣ ( u + v ) − ( i + j ) ∣ ⏟ A ( i + j ) + ∑ u , v ∣ ( u − v ) − ( i − j ) ∣ ⏟ B ( i − j ) ) S_{i,j} = \sum_{u,v}\max(|u-i|,|v-j|) = \frac{1}{2}\Bigl(\underbrace{\sum_{u,v}|(u+v)-(i+j)|}_{A(i+j)} +\underbrace{\sum_{u,v}|(u-v)-(i-j)|}_{B(i-j)}\Bigr) Si,j=u,vmax(ui,vj)=21(A(i+j) u,v(u+v)(i+j)+B(ij) u,v(uv)(ij))
2. 预处理一维频次及前缀和

  • 对于 s = u + v ∈ [ 2 , n + m ] s=u+v\in[2,\,n+m] s=u+v[2,n+m],统计每个 s s s 出现的次数 c n t S [ s ] \mathit{cntS}[s] cntS[s],再做前缀和

p r e C n t S [ s ] = ∑ x = 2 s c n t S [ x ] , p r e S u m S [ s ] = ∑ x = 2 s x ⋅ c n t S [ x ] . \mathit{preCntS}[s]=\sum_{x=2}^s\mathit{cntS}[x],\quad \mathit{preSumS}[s]=\sum_{x=2}^s x\cdot\mathit{cntS}[x]. preCntS[s]=x=2scntS[x],preSumS[s]=x=2sxcntS[x].

  • 对于 t = u − v ∈ [ 1 − m , n − 1 ] t=u-v\in[1-m,\,n-1] t=uv[1m,n1],映射到正下标后统计每个 t t t 的次数 c n t T [ t ] \mathit{cntT}[t] cntT[t],并做同样的前缀和 p r e C n t T \mathit{preCntT} preCntT p r e S u m T \mathit{preSumT} preSumT
  1. O(1) 计算任意 A ( p ) A(p) A(p) B ( q ) B(q) B(q)
    令总单元格数为 M = n × m M=n\times m M=n×m
  • 若要算

A ( p ) = ∑ s = 2 n + m c n t S [ s ] ∣ s − p ∣ , A(p)=\sum_{s=2}^{n+m}\mathit{cntS}[s]\;|s-p|, A(p)=s=2n+mcntS[s]sp,

则分成两段:

// 左侧 s <= p
long long cntL = preCntS[p], sumL = preSumS[p];
// 右侧 s &gt; p
long long cntR = M - cntL, sumR = preSumS[n+m] - sumL;
// A(p) = p*cntL - sumL + sumR - p*cntR
  • 同理计算 B ( q ) B(q) B(q)
  1. 整体流程
  • 读入 n, m 及矩阵 strength[i][j]。
  • 预处理 c n t S , p r e C n t S , p r e S u m S \mathit{cntS},\mathit{preCntS},\mathit{preSumS} cntS,preCntS,preSumS 以及 c n t T , … \mathit{cntT},\dots cntT,
  • 对每个格点 ( i , j ) (i,j) (i,j)

计算 p = i + j p=i+j p=i+j q = i − j q=i-j q=ij(记得偏移映射)。

用上述公式算出 A ( p ) A(p) A(p) B ( q ) B(q) B(q)

得到距离和中间值

x p m c l z j k l n = A ( p ) + B ( q ) 2 . xpmclzjkln = \frac{A(p)+B(q)}{2}. xpmclzjkln=2A(p)+B(q).

输出 strength[i][j] × xpmclzjkln。

下面给出完整 C++ 代码示例(变量名中间值即用 xpmclzjkln):

#include <bits/stdc++.h>
using namespace std;
using ll = long long;int main(){ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;vector<vector<ll>> S(n+1, vector<ll>(m+1));for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)cin >> S[i][j];ll M = 1LL * n * m;// 1)处理 s = u+v ∈ [2, n+m]int Ls = n + m;vector<ll> cntS(Ls+1, 0);for(int u=1;u<=n;u++)for(int v=1;v<=m;v++)cntS[u+v]++;vector<ll> preCntS(Ls+1, 0), preSumS(Ls+1, 0);for(int s=2;s<=Ls;s++){preCntS[s] = preCntS[s-1] + cntS[s];preSumS[s] = preSumS[s-1] + cntS[s] * s;}// 2)处理 t = u-v ∈ [1-m, n-1] 映射到 t' = t + (m) ∈ [1, n+m-1]int Lt = n + m - 1;int offset = m; vector<ll> cntT(Lt+2, 0);for(int u=1;u<=n;u++){for(int v=1;v<=m;v++){int t = u - v + offset; cntT[t]++;}}vector<ll> preCntT(Lt+2, 0), preSumT(Lt+2, 0);for(int t=1;t<=Lt;t++){preCntT[t] = preCntT[t-1] + cntT[t];preSumT[t] = preSumT[t-1] + cntT[t] * t;}// 3)对任意 p 和 q 的 A(p), B(q) 求值auto calcA = [&](int p)->ll{// p ∈ [2..Ls]ll cntL = preCntS[p], sumL = preSumS[p];ll cntR = M - cntL;ll sumR = preSumS[Ls] - sumL;return p * cntL - sumL + sumR - p * cntR;};auto calcB = [&](int q)->ll{// q' = q + offset ∈ [1..Lt]int qp = q + offset;ll cntL = preCntT[qp], sumL = preSumT[qp];ll cntR = M - cntL;ll sumR = preSumT[Lt] - sumL;return qp * cntL - sumL + sumR - qp * cntR;};// 4)输出结果// 中间值 xpmclzjkln = (A+B)/2// 最终 cost = S[i][j] * xpmclzjklnfor(int i=1;i<=n;i++){for(int j=1;j<=m;j++){ll A = calcA(i + j);ll B = calcB(i - j);ll xpmclzjkln = (A + B) / 2;ll cost = S[i][j] * xpmclzjkln;cout << cost << (j==m?'\n':' ');}}return 0;
}

复杂度分析

  • 预处理 cntScntT 及前缀和:O(nm + n+m)。
  • 主循环对每个格点常数时间算两次一维前缀和查找:O(nm)。
    总计 O(nm),可轻松应对 n × m ≤ 1 0 6 n\times m\le10^6 n×m106

这样即可在 400 ms、256 MB 内完成所有位置的影响力代价计算。

http://www.dtcms.com/wzjs/27849.html

相关文章:

  • 广东快速做网站公司想要导航推广网页怎么做
  • 建筑网站建设案例seo最新快速排名
  • 如何看一个网站是谁做的那个推广平台好用
  • shopex网站首页空白中国最新消息
  • 建设部幼儿园网站湖南企业seo优化
  • 网站开发合同售后服务今日头条网页版
  • 如何建立一家网站湖南疫情最新情况
  • 网站排名标准长沙网站设计
  • 做网站前期构架图优化设计官方电子版
  • 佛山营销型网站建设公司培训机构哪家好
  • 网站,商城,app 建设seo云优化软件
  • 网站后台关键词链接怎样做推广赚钱app哪个靠谱
  • 做设备出口网站搜索引擎优化的流程是什么
  • 网站服务器管理 硬件百度下载安装
  • 网上做调查网站有哪些大数据比较好的培训机构
  • 山东做网站建设的好公司个人网站设计
  • 莱芜雪野湖地图seo刷关键词排名优化
  • 初级买题做哪个网站好论坛推广怎么做
  • 变更网站做推广需要备案石家庄seo代理商
  • 温州做美食网站seo的基本步骤是什么
  • 网站代备十大小说网站排名
  • 做电影网站多少钱东营网站建设
  • 有服务器怎么做网站seo优化培训学校
  • 汨罗做网站价格什么是网络推广
  • 虚拟机如何做网站广告免费发布信息平台
  • 做网站的需求是吗网络优化公司哪家好
  • 哪些网站可以免费做简历网络营销策划方案论文
  • 十堰网站建设专家网站做优化好还是推广好
  • 东莞个人免费建网站网络软文案例
  • 苏州工商注册代办页面优化的方法有哪些