当前位置: 首页 > wzjs >正文

oneinstack. WordPressqq群排名优化

oneinstack. WordPress,qq群排名优化,怎么加入电商,旅游系统网站开发的背景First Blood:什么是平衡二叉搜索树? 二叉搜索树(BST)的性质 左小右大:每个节点的左子树中所有节点的值都小于该节点的值,右子树中所有节点的值都大于该节点的值。 子树也是BST:左子树和右子树也…

在这里插入图片描述
在这里插入图片描述
First Blood:什么是平衡二叉搜索树?

二叉搜索树(BST)的性质
左小右大:每个节点的左子树中所有节点的值都小于该节点的值,右子树中所有节点的值都大于该节点的值
子树也是BST:左子树和右子树也必须是二叉搜索树。
中序遍历有序:对二叉搜索树进行中序遍历,可以得到一个按从小到大顺序排列的有序序列。

平衡二叉搜索树(Balanced BST)的性质
平衡性:平衡二叉搜索树在满足二叉搜索树所有性质的基础上,要求每个节点的左右子树的高度差的绝对值不超过1
高效操作:由于树的高度平衡,插入、删除和查找等操作的时间复杂度稳定在 O(log n) 级别。

递归思路:
数组中间的点是根节点。数组左边到中间的左子区间可以构成平衡二叉树的左子树。数组中间到右边的右子区间可以构成平衡二叉树的右子树。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {public:TreeNode* dfs(vector<int>& nums,int left,int right){if(left==right){return nullptr;}int m=left+(right-left)/2;return new TreeNode(nums[m],dfs(nums,left,m),dfs(nums,m+1,right));}TreeNode* sortedArrayToBST(vector<int>& nums) {return dfs(nums,0,nums.size());}
};

为什么right是从nums.size()开始而不是nums.size()-1呢?

A:首先,right一开始可以是nums.size()-1,但也要:

class Solution {
public:TreeNode* dfs(vector<int>& nums, int left, int right) {if(left > right) {  // 注意终止条件变了return nullptr;}int m = left + (right - left) / 2;return new TreeNode(nums[m], dfs(nums, left, m-1),      // 注意这里变了dfs(nums, m+1, right));}TreeNode* sortedArrayToBST(vector<int>& nums) {return dfs(nums, 0, nums.size()-1);  // 这里就用 size()-1}
};

举例说明:nums = [1, 2, 3]

dfs([1,2,3], 0, 3)  // 处理 [0,3),即索引 0,1,2
├─ m = 1,选择 nums[1] = 2
├─ 左子树:dfs([1,2,3], 0, 1)  // 处理 [0,1),即索引 0
│  ├─ m = 0,选择 nums[0] = 1  
│  ├─ 左子树:dfs([1,2,3], 0, 0)  // [0,0) 空区间,left==right
│  └─ 右子树:dfs([1,2,3], 1, 1)  // [1,1) 空区间,left==right
└─ 右子树:dfs([1,2,3], 2, 3)  // 处理 [2,3),即索引 2├─ m = 2,选择 nums[2] = 3├─ 左子树:dfs([1,2,3], 2, 2)  // [2,2) 空区间,left==right  └─ 右子树:dfs([1,2,3], 3, 3)  // [3,3) 空区间,left==right
dfs([1,2,3], 0, 2)  // 处理 [0,2],即索引 0,1,2
├─ m = 1,选择 nums[1] = 2
├─ 左子树:dfs([1,2,3], 0, 0)  // 处理 [0,0],即索引 0
│  ├─ m = 0,选择 nums[0] = 1
│  ├─ 左子树:dfs([1,2,3], 0, -1)  // [0,-1] 空区间,left>right
│  └─ 右子树:dfs([1,2,3], 1, 0)   // [1,0] 空区间,left>right
└─ 右子树:dfs([1,2,3], 2, 2)  // 处理 [2,2],即索引 2├─ m = 2,选择 nums[2] = 3├─ 左子树:dfs([1,2,3], 2, 1)   // [2,1] 空区间,left>right└─ 右子树:dfs([1,2,3], 3, 2)   // [3,2] 空区间,left>right

在这里插入图片描述

时间复杂度分析:

主要操作分析:
1.每个节点只被访问一次:每次递归调用都会创建一个新节点
2.每次递归的工作量:
计算中点:O(1)
创建节点:O(1)
递归调用:分解为两个子问题

递推关系:
T(n) = 2 * T(n/2) + O(1)
其中:
T(n) 表示处理n个元素的时间
2 * T(n/2) 表示处理左右两个子树
O(1) 表示当前层的操作时间

递推求解:

T(n) = 2 * T(n/2) + 1
T(n/2) = 2 * T(n/4) + 1
T(n/4) = 2 * T(n/8) + 1
...
展开:
T(n) = 2 * (2 * T(n/4) + 1) + 1 = 4 * T(n/4) + 2 + 1
T(n) = 4 * (2 * T(n/8) + 1) + 3 = 8 * T(n/8) + 4 + 3
...
T(n) = 2^k * T(n/2^k) + (2^k - 1)

当 n/2^k = 1 时,即 k = log₂(n):
T(n) = n * T(1) + (n - 1) = n * 1 + n - 1 = 2n - 1 = O(n)
所以时间复杂度为O(n)

空间复杂度:O(log n)
递归深度:
每次递归将问题规模减半
递归深度 = log₂(n)
每层递归占用常数空间
调用栈空间:O(log n)

http://www.dtcms.com/wzjs/26707.html

相关文章:

  • 建筑工程有限公司电话广州百度网站排名优化
  • 小说网站建设模板下载app运营推广策划方案
  • 安阳县吕村七中录取分数线广州seo关键词
  • 三级 做爰免费网站网站 seo
  • 建设部作业证件查询官方网站免费b站推广
  • 内蒙古做网站的公司广告设计与制作需要学什么
  • 网站后台登陆密码破解百度下载老版本
  • 南宁seo排名首页潍坊seo教程
  • 品牌网站建设顾问百度浏览器官网
  • 自建站shopify东莞网站设计公司排名
  • 潍坊学网站建设郑州seo建站
  • 加强志鉴网站建设吉林seo基础知识
  • 如何成功进行网络营销seo线上培训班
  • 秦皇岛网站建设哪里有什么软件引流客源最快
  • 昆明网站开发正规培训ip或域名查询网
  • 住房建设城乡网站亚马逊跨境电商
  • 无锡做网站公司哪家比较好电商网络销售是做什么
  • 河南注册公司代理免费外链网站seo发布
  • 海南流感疫情最新消息百度seo推广优化
  • 网站开发平台的定义北京网站设计公司
  • 易语言和网站做交互成人英语培训
  • 绍兴网站建设模板网站谷歌seo什么意思
  • 汉中做网站电话什么叫百度竞价推广
  • 南通做网站优化公司免费网站安全检测
  • wordpress中文站sem是什么的英文缩写
  • wordpress 花瓣网青岛关键词优化报价
  • 设计培训机构win7怎么优化最流畅
  • 高端网站建设批发如何开发一个软件平台
  • 政府办公室网站建设优秀网页设计赏析
  • vps如何做网站丹东网站seo