当前位置: 首页 > wzjs >正文

微信商城网站企业网站营销的典型案例

微信商城网站,企业网站营销的典型案例,网站子目录怎么做反向代理设置,青岛市政府官方网站app一、简介 在当今数字化时代,生物识别技术作为一种安全、便捷的身份验证方式,正广泛应用于各个领域。指纹识别作为生物识别技术中的佼佼者,因其独特性和稳定性,成为了众多应用场景的首选。今天,我们就来深入探讨如何利…

一、简介

在当今数字化时代,生物识别技术作为一种安全、便捷的身份验证方式,正广泛应用于各个领域。指纹识别作为生物识别技术中的佼佼者,因其独特性和稳定性,成为了众多应用场景的首选。今天,我们就来深入探讨如何利用 OpenCV 库实现一个简单的指纹识别系统,并详细解读相关代码。

二、具体案例实现

本例是将src1和src2与模板model进行匹配的一个代码实现

具体代码如下

import cv2
def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)
def verification(src, model):# 创建SIFT特征提取器sift = cv2.SIFT_create()# 检测关键点和计算描述符(特征向量) 源图像kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜# 检测关键点和计算描述符 模板图像kp2, des2 = sift.detectAndCompute(model, None)# 创建FLANN匹配器flann = cv2.FlannBasedMatcher()# 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。# 进行比较筛选ok = []for m, n in matches:#m是最接近点的匹配结果,n是次接近点的匹配结果# 根据Lowe's比率测试,选择最佳匹配if m.distance < 0.8 * n.distance:ok.append(m)# 统计通过筛选的匹配数量num = len(ok)if num >= 500:result = "认证通过"else:result = "认证失败"return result
if __name__ == "__main__":src1 = cv2.imread("src1.BMP")cv_show('src1', src1)src2 = cv2.imread("src2.BMP")cv_show('src2', src2)model = cv2.imread("model.BMP")cv_show('model', model)result1= verification(src1, model)result2= verification(src2, model)print("src1验证结果为:", result1)print("src2验证结果为:", result2)

1. 图像显示函数

def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)

这个函数的作用是使用 OpenCV 的imshow函数显示图像,并通过waitKey(0)等待用户按下任意键后关闭图像窗口。name参数是窗口的名称,img参数是要显示的图像数据

2. 指纹验证函数

def verification(src, model):# 创建SIFT特征提取器sift = cv2.SIFT_create()# 检测关键点和计算描述符(特征向量) 源图像kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜# 检测关键点和计算描述符 模板图像kp2, des2 = sift.detectAndCompute(model, None)# 创建FLANN匹配器flann = cv2.FlannBasedMatcher()# 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。# 进行比较筛选ok = []for m, n in matches:#m是最接近点的匹配结果,n是次接近点的匹配结果# 根据Lowe's比率测试,选择最佳匹配if m.distance < 0.8 * n.distance:ok.append(m)# 统计通过筛选的匹配数量num = len(ok)if num >= 500:result = "认证通过"else:result = "认证失败"return result

首先,创建 SIFT 特征提取器对象sift

然后,分别对输入的待验证指纹图像src和模板指纹图像model使用sift.detectAndCompute方法检测关键点并计算描述符。detectAndCompute方法的第一个参数是图像,第二个参数是掩膜(这里设为None)。

接着,创建 FLANN 匹配器对象flann,并使用flann.knnMatch方法对两个图像的描述符进行匹配,k=2表示为每个描述符找到两个最近的匹配。

之后,通过遍历匹配结果,根据 Lowe's 比率测试(即m.distance < 0.8 * n.distance)筛选出最佳匹配点,存入ok列表。

最后,统计ok列表的长度,即匹配点的数量。如果数量大于等于 500,则认为认证通过,返回 "认证通过";否则返回 "认证

3. 主函数

if __name__ == "__main__":src1 = cv2.imread("src1.BMP")cv_show('src1', src1)src2 = cv2.imread("src2.BMP")cv_show('src2', src2)model = cv2.imread("model.BMP")cv_show('model', model)result1= verification(src1, model)result2= verification(src2, model)print("src1验证结果为:", result1)print("src2验证结果为:", result2)

在主函数中,首先使用cv2.imread函数读取三张图像,分别是src1.BMP、src2.BMP(待验证指纹图像)和model.BMP(模板指纹图像)。然后使用cv_show函数依次显示这三张图像。接着,分别对src1和src2调用verification函数进行指纹验证,并将结果存储在result1和result2中。最后,打印出两个待验证指纹图像的验证结果。

4、运行结果

三、总结

通过上述代码,我们成功实现了一个基于 OpenCV 的简单指纹验证系统。这个系统能够根据指纹图像的特征匹配情况判断指纹是否匹配。然而,实际应用中,还存在一些可以优化和改进的地方。例如,指纹图像的预处理(如去噪、增强对比度等)可以进一步提高特征提取的准确性;调整匹配算法的参数或尝试其他更先进的匹配算法,可以提高匹配的精度和效率。希望本文的介绍和代码示例能够帮助你对 OpenCV 指纹验证技术有更深入的理解,也期待你在实际应用中不断探索和完善,将指纹验证技术应用到更多有价值的场景中。

http://www.dtcms.com/wzjs/23405.html

相关文章:

  • 做招聘网站要多久搜狗网址大全
  • 牛牛网站建设如何做seo
  • 海南北京网站建设百度商业平台官网
  • php语言开发网站流程今天发生的重大新闻
  • 做网站推广托管注意seo工作
  • 网站推广意义海南seo顾问服务
  • 深圳网站建设定制seo包括哪些方面
  • 网站文章图片如何跳转乔拓云网微信小程序制作
  • 网站建设与维护里面的个人简历最好的网络营销软件
  • app商城网站开发长尾关键词快速排名软件
  • 网站建设较好的公司苹果被曝开发搜索引擎对标谷歌
  • 制作网站 太原好看的html网页
  • 如何确定网站栏目官网seo哪家公司好
  • 网站后台怎么做qq群自动加怎么被百度收录
  • 网址查询站长工具宁波网站建设的公司
  • 用外国人的照片做网站高端网站定制
  • 房和城乡建设部网站站长收录平台
  • 建设网站需要购买数据库吗搜索引擎优化的方法
  • 经济型网站建设网页设计html代码大全
  • 北京网站建设公司拟百度的营销推广
  • 网站怎么做留言区性价比高seo的排名优化
  • 株洲网站优化100%能上热门的文案
  • 伊春网站建设佛山网站优化服务
  • 怎么找人做网站啊安徽seo推广公司
  • 绵阳欣诚建设宁波seo推广联系方法
  • 百度站长 添加网站百度旗下产品
  • 区县12380网站建设情况seo有哪些作用
  • 企业网站怎么制作流程南京网站建设
  • 成都平面设计公司有哪些绍兴百度seo
  • wordpress 运行效率汉川seo推广