当前位置: 首页 > wzjs >正文

wap网站源码 下载全国疫情一览表

wap网站源码 下载,全国疫情一览表,制作灯笼的心得体会,做自己的第一个网站目录 问题描述 解决思路 关键点 代码实现 代码解析 1. 初始化结果和路径 2. 深度优先搜索(DFS) 3. 遍历候选数字 4. 递归与回溯 示例分析 复杂度与优化 回溯算法三部曲 1. 路径选择:记录当前路径 2. 递归探索:进入下…

目录

问题描述

解决思路

关键点

代码实现

代码解析

1. 初始化结果和路径

2. 深度优先搜索(DFS)

3. 遍历候选数字

4. 递归与回溯

示例分析

复杂度与优化

回溯算法三部曲

1. 路径选择:记录当前路径

2. 递归探索:进入下一层决策

3. 撤销选择:回溯到上一层

 代码框架模板

关键点解析

总结


问题描述

我们需要找出所有由 k 个不同数字组成的组合,这些数字的范围是 1 到 9,且它们的和等于 n。组合中的数字不能重复使用,且结果不能包含重复的组合。例如,当 k=3, n=7 时,唯一有效的组合是 [1,2,4]

解决思路

这个问题可以通过回溯算法解决。核心思想是递归地尝试每一个可能的数字,逐步构建符合条件的组合,并通过剪枝优化减少无效搜索。

关键点
  1. 数字范围固定:所有数字只能在 1-9 中选择。

  2. 组合唯一性:每个组合中的数字必须严格递增,避免重复(如 [1,2,4] 和 [2,1,4] 被视为同一组合)。

  3. 剪枝优化:在递归过程中,提前终止不可能满足条件的分支,大幅提高效率。

代码实现

var combinationSum3 = function (k, n) {const result = [];const path = [];const dfs = (start, sum) => {// 终止条件:路径长度等于k且和等于nif (path.length === k && sum === n) {result.push([...path]);return;}// 遍历候选数字for (let i = start; i <= 9; i++) {// 剪枝1:剩余数字不够组成k个数if (path.length + (9 - i + 1) < k) break; // 剪枝2:当前和超过nif (sum + i > n) break; path.push(i);dfs(i + 1, sum + i); // 递归下一层,起始位置为i+1path.pop();          // 回溯,撤销选择}};dfs(1, 0); // 从数字1开始,初始和为0return result;
};

代码解析

1. 初始化结果和路径
  • result:存储所有符合条件的组合。

  • path:记录当前递归路径中的数字。

2. 深度优先搜索(DFS)
  • 参数start 表示当前递归的起始数字,sum 表示路径中数字的当前和。

  • 终止条件:当路径长度等于 k 且和等于 n 时,将当前路径加入结果列表。

3. 遍历候选数字
  • 循环范围:从 start 到 9,确保数字递增,避免重复组合。

  • 剪枝1path.length + (9 - i + 1) < k
    如果当前已选数字数量加上剩余可用数字数量不足 k,说明无法组成有效组合,直接终止循环。
    例如:k=3,当前已选1个数字,剩余可用数字是 8 和 9(共2个),显然不够选2个。

  • 剪枝2sum + i > n
    如果当前路径和加上 i 已经超过 n,后续更大的数字只会让和更大,无需继续搜索。

4. 递归与回溯
  • 选择数字:将 i 加入路径,递归调用 dfs 处理下一个数字。

  • 撤销选择:递归返回后,将 i 从路径中移除,尝试其他可能的数字。

示例分析

以 k=3, n=7 为例:

  1. 初始调用dfs(1, 0)

  2. 第一层循环i=1,路径为 [1],和为1。

  3. 第二层循环i=2(起始为2),路径为 [1,2],和为3。

  4. 第三层循环i=4(起始为3),路径为 [1,2,4],和为7,满足条件,加入结果。

  5. 回溯:递归返回,尝试其他数字,但均无法满足条件,最终结果唯一。


复杂度与优化

  • 时间复杂度:最坏情况为 O(9! / (k!(9-k)!)),即组合数的时间。

  • 空间复杂度:递归栈深度为 k,空间复杂度为 O(k)

通过剪枝,实际运行时间远低于理论最坏情况,因为无效分支被提前终止。


回溯算法三部曲

回溯算法是解决组合、排列、子集等问题的经典方法。它的核心思想是递归地尝试所有可能的选择,并通过“撤销选择”回到之前的状态,从而穷举所有解。其实现过程可以总结为以下三个关键步骤:


1. 路径选择:记录当前路径

在每一步递归中,将当前的选择加入路径(通常是一个数组),表示“当前正在尝试这个选择”。
对应代码path.push(i)
作用:保存当前递归层的选择,用于后续判断是否满足条件。
示例:在组合问题中,选择数字 i 加入 path,表示尝试将 i 作为组合的一部分。


2. 递归探索:进入下一层决策

基于当前路径,递归调用函数,处理下一个选择(比如下一个数字或位置)。
对应代码dfs(i + 1, sum + i)
作用:进入下一层递归,继续尝试剩余的选择。
示例:在组合问题中,递归时从 i+1 开始,确保数字不重复且递增,避免重复组合。


3. 撤销选择:回溯到上一层

当递归返回后(即完成当前分支的探索),将最后加入路径的元素移除,回到上一层状态,尝试其他可能的选择。
对应代码path.pop()
作用:撤销当前层的选择,保证路径的正确性,避免污染其他分支。
示例:组合问题中,当尝试完以 i 开头的所有组合后,移除 i,尝试下一个数字。

 代码框架模板
function backtrack(路径, 选择列表) {if (满足终止条件) {将路径加入结果;return;}for (选择 in 选择列表) {做选择:将选择加入路径;backtrack(路径, 新的选择列表); // 进入下一层递归撤销选择:将选择从路径移除;    // 回溯}
}
关键点解析
  1. 路径的维护
    path 数组记录当前递归路径的选择,必须通过 push 和 pop 确保状态正确。

  2. 递归与回溯的关系
    递归是纵向深入探索一条路径,回溯是横向尝试其他可能的选择。递归的终点是终止条件,回溯的触发点是递归返回后的 pop

  3. 剪枝优化
    在组合问题中,通过以下两种剪枝大幅减少递归次数:

    • 剩余数字不足path.length + (9 - i + 1) < k
      例如:如果还需要选 2 个数字,但剩余可用数字只有 1 个,直接终止。

    • 和超过目标值sum + i > n
      当前路径和已经超过 n,无需继续递归

 


总结

该问题通过回溯算法枚举所有可能的组合,结合剪枝策略(剩余数字不足、和超过目标值)显著提高效率。核心在于:

  1. 递增选择数字:避免重复组合。

  2. 剪枝优化:减少不必要的递归调用。

  3. 回溯机制:撤销选择以尝试其他可能。

这种模式适用于许多组合问题,如子集、排列、组合总和等。

http://www.dtcms.com/wzjs/22066.html

相关文章:

  • 电子商务网站建设文案优秀企业网站欣赏
  • 保洁网站模板网络推广理实一体化软件
  • 安宁网站建设移动网站如何优化排名
  • 企业网站建设 新天地网络网络营销推广渠道有哪些
  • 钓鱼网站制作的报告做灰色词seo靠谱
  • 建设网站jw100大型网站建设平台
  • 关于做网站的外语文献书名企点官网
  • 合肥市城乡和建设网站商丘网络推广外包
  • 网上做视频赚钱的网站有哪些如何做网址
  • 南京做微网站seo的目的是什么
  • 免费注册域名的方法seo上排名
  • 汉中网站建设费用短视频培训学校
  • 哪个网站可以接针织衫做单腾讯广点通
  • wap购物网站源码百度流量统计
  • 做恋足的视频网站重庆可靠的关键词优化研发
  • 宁波网站推广运营搜索引擎优化技术
  • pc网站做app最新时事热点
  • 中国工程建设网站网站制作价格
  • 发表文章静态网页模板赣州seo顾问
  • 电子政务与网站建设 总结站内seo是什么意思
  • b2b b2c c2c o2o特点seo推广编辑
  • 网站有了备案号之后能做什么推广网站要注意什么
  • 如果让你建设网站之前你会想什么成品网站源码的优化技巧
  • 成都高新区网站建设百度网站首页网址
  • java大型网站开发做优化的网站
  • 高新快速建设网站找哪家电商运营多少钱一个月
  • 云科技网站建设烟台seo关键词排名
  • 建设公司网站模版知名的建站公司
  • wordpress用户中心UC云南网络推广seo代理公司
  • wordpress关停网站进行优化