当前位置: 首页 > wzjs >正文

张家港市网站建设北京整站线上推广优化

张家港市网站建设,北京整站线上推广优化,重庆网红打卡地方有哪些景点,公司做网站需要注意些什么目录 一、实验内容 二、实验过程 2.1 准备数据集 2.2 SIFT特征提取 2.3 学习“视觉词典”(vision vocabulary) 2.4 建立图像索引并保存到数据库中 2.5 用一幅图像查询 三、实验小结 一、实验内容 实现基于颜色直方图、bag of word等方法的以图搜…

目录

一、实验内容

二、实验过程

2.1 准备数据集

2.2 SIFT特征提取

2.3 学习“视觉词典”(vision vocabulary)

2.4 建立图像索引并保存到数据库中

2.5 用一幅图像查询

三、实验小结


一、实验内容

  1. 实现基于颜色直方图、bag of word等方法的以图搜图,打印图片特征向量、图片相似度等
  2. 打印视觉词典大小、可视化部分特征基元、可视化部分图片的频率直方图

二、实验过程

2.1 准备数据集

如图1所示,这里准备的文件夹中含有100张实验图片。

图1
2.2 SIFT特征提取

2.2.1 实验代码

import os
import cv2
import numpy as np
from PCV.tools.imtools import get_imlist
#获取图像列表
imlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)
#生成特征文件路径
featlist = [os.path.splitext(imlist[i])[0] + '.sift' for i in range(nbr_images)]
#创建sift对象
sift = cv2.SIFT_create()
#提取sift特征并保存
for i in range(nbr_images):try:img = cv2.imread(imlist[i], cv2.IMREAD_GRAYSCALE)if img is None:raise ValueError(f"Image {imlist[i]} could not be read")keypoints, descriptors = sift.detectAndCompute(img, None)locs = np.array([[kp.pt[0], kp.pt[1], kp.size, kp.angle] for kp in keypoints])np.savetxt(featlist[i], np.hstack((locs, descriptors)))print(f"Processed {imlist[i]} to {featlist[i]}")except Exception as e:print(f"Failed to process {imlist[i]}: {e}")
#可视化sift特征
def visualize_sift_features(image_path, feature_path):img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)if img is None:raise ValueError(f"Image {image_path} could not be read")features = np.loadtxt(feature_path)locs = features[:, :4]descriptors = features[:, 4:]img_with_keypoints = cv2.drawKeypoints(img, [cv2.KeyPoint(x=loc[0], y=loc[1], _size=loc[2], _angle=loc[3]) for loc in locs], outImage=np.array([]))plt.figure(figsize=(10, 10))plt.imshow(img_with_keypoints, cmap='gray')plt.title('SIFT Features Visualization')plt.axis('off')plt.show()visualize_sift_features(imlist[0], featlist[0])

2.2.2 结果展示

 如图2所示,对文件夹中的所有图片使用sift特征描述子,图3展示了对第一个图像的SIFT特征的可视化。

图2
图3
2.3 学习“视觉词典”(vision vocabulary)

2.3.1 实验代码

(1)vocabulary.py文件

from numpy import *
from scipy.cluster.vq import *
from PCV.localdescriptors import sift
#构建视觉词汇表
class Vocabulary(object):#初始化方法def __init__(self,name):self.name = nameself.voc = []self.idf = []self.trainingdata = []self.nbr_words = 0#训练过程def train(self,featurefiles,k=100,subsampling=10):nbr_images = len(featurefiles)descr = []descr.append(sift.read_features_from_file(featurefiles[0])[1])descriptors = descr[0] for i in arange(1,nbr_images):descr.append(sift.read_features_from_file(featurefiles[i])[1])descriptors = vstack((descriptors,descr[i]))#使用K-means聚类生成视觉单词self.voc,distortion = kmeans(descriptors[::subsampling,:],k,1)self.nbr_words = self.voc.shape[0]#生成视觉单词的直方图imwords = zeros((nbr_images,self.nbr_words))for i in range( nbr_images ):imwords[i] = self.project(descr[i])nbr_occurences = sum( (imwords > 0)*1 ,axis=0)#计算每个视觉单词的逆文档频率self.idf = log( (1.0*nbr_images) / (1.0*nbr_occurences+1) )self.trainingdata = featurefiles#投影方法def project(self,descriptors):imhist = zeros((self.nbr_words))words,distance = vq(descriptors,self.voc)for w in words:imhist[w] += 1return imhistdef get_words(self,descriptors):return vq(descriptors,self.voc)[0]

(2)visual vocabulary.py文件

import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlistimlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)featlist = [imlist[i][:-3] + 'sift' for i in range(nbr_images)]
voc = vocabulary.Vocabulary('bof_test')
voc.train(featlist, 50, 10)with open(r'D:\Computer vision\20241217dataset\vocabulary50.pkl', 'wb') as f:pickle.dump(voc, f)
print('vocabulary is:', voc.name, voc.nbr_words)

2.3.2 结果展示

 如图4所示,打印视觉词典的名称和长度

图4
2.4 建立图像索引并保存到数据库中

2.4.1 实验代码

(1)imagesearch.py文件

from numpy import *
import pickle
import sqlite3 as sqlite
from functools import cmp_to_keyclass Indexer(object):def __init__(self,db,voc):self.con = sqlite.connect(db)self.voc = vocdef __del__(self):self.con.close()def db_commit(self):self.con.commit()def get_id(self,imname):cur = self.con.execute("select rowid from imlist where filename='%s'" % imname)res=cur.fetchone()if res==None:cur = self.con.execute("insert into imlist(filename) values ('%s')" % imname)return cur.lastrowidelse:return res[0] def is_indexed(self,imname):im = self.con.execute("select rowid from imlist where filename='%s'" % imname).fetchone()return im != Nonedef add_to_index(self,imname,descr):if self.is_indexed(imname): returnprint ('indexing', imname)imid = self.get_id(imname)imwords = self.voc.project(descr)nbr_words = imwords.shape[0]for i in range(nbr_words):word = imwords[i]self.con.execute("insert into imwords(imid,wordid,vocname) values (?,?,?)", (imid,word,self.voc.name))self.con.execute("insert into imhistograms(imid,histogram,vocname) values (?,?,?)", (imid,pickle.dumps(imwords),self.voc.name))def create_tables(self): self.con.execute('create table imlist(filename)')self.con.execute('create table imwords(imid,wordid,vocname)')self.con.execute('create table imhistograms(imid,histogram,vocname)')        self.con.execute('create index im_idx on imlist(filename)')self.con.execute('create index wordid_idx on imwords(wordid)')self.con.execute('create index imid_idx on imwords(imid)')self.con.execute('create index imidhist_idx on imhistograms(imid)')self.db_commit()def cmp_for_py3(a, b):return (a > b) - (a < b)class Searcher(object):def __init__(self,db,voc):self.con = sqlite.connect(db)self.voc = vocdef __del__(self):self.con.close()def get_imhistogram(self, imname):cursor = self.con.execute("select rowid from imlist where filename='%s'" % imname)row = cursor.fetchone()if row is None:raise ValueError(f"No entry found in imlist for filename: {imname}")im_id = row[0]cursor = self.con.execute("select histogram from imhistograms where rowid=%d" % im_id)s = cursor.fetchone()if s is None:raise ValueError(f"No histogram found for rowid: {im_id}")return pickle.loads(s[0])def candidates_from_word(self,imword):im_ids = self.con.execute("select distinct imid from imwords where wordid=%d" % imword).fetchall()return [i[0] for i in im_ids]def candidates_from_histogram(self,imwords):words = imwords.nonzero()[0]candidates = []for word in words:c = self.candidates_from_word(word)candidates+=ctmp = [(w,candidates.count(w)) for w in set(candidates)]tmp.sort(key=cmp_to_key(lambda x,y:cmp_for_py3(x[1],y[1])))tmp.reverse()return [w[0] for w in tmp] def query(self, imname):try:h = self.get_imhistogram(imname)except ValueError as e:print(e)return []candidates = self.candidates_from_histogram(h)matchscores = []for imid in candidates:cand_name = self.con.execute("select filename from imlist where rowid=%d" % imid).fetchone()cand_h = self.get_imhistogram(cand_name)cand_dist = sqrt(sum(self.voc.idf * (h - cand_h) ** 2))matchscores.append((cand_dist, imid))matchscores.sort()return matchscoresdef get_filename(self,imid):s = self.con.execute("select filename from imlist where rowid='%d'" % imid).fetchone()return s[0]def tf_idf_dist(voc,v1,v2):v1 /= sum(v1)v2 /= sum(v2)return sqrt( sum( voc.idf*(v1-v2)**2 ) )def compute_ukbench_score(src,imlist):nbr_images = len(imlist)pos = zeros((nbr_images,4))for i in range(nbr_images):pos[i] = [w[1]-1 for w in src.query(imlist[i])[:4]]score = array([ (pos[i]//4)==(i//4) for i in range(nbr_images)])*1.0return sum(score) / (nbr_images)from PIL import Image
from pylab import *def plot_results(src,res):figure()nbr_results = len(res)for i in range(nbr_results):imname = src.get_filename(res[i])subplot(1,nbr_results,i+1)imshow(array(Image.open(imname)))axis('off')show()

(2)quantizeSet.py文件

import pickle
from PCV.imagesearch import imagesearch
from PCV.localdescriptors import sift
import sqlite3
from PCV.tools.imtools import get_imlist
import cv2
import matplotlib.pyplot as pltimlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)featlist = [imlist[i][:-3] + 'sift' for i in range(nbr_images)]with open(r'D:\Computer vision\20241217dataset\vocabulary50.pkl', 'rb') as f:voc = pickle.load(f)
indx = imagesearch.Indexer('D:\\Computer vision\\20241217CODES\\testImaAdd.db', voc)
indx.create_tables()
for i in range(nbr_images)[:100]:locs, descr = sift.read_features_from_file(featlist[i])indx.add_to_index(imlist[i], descr)
indx.db_commit()
con = sqlite3.connect('D:\\Computer vision\\20241217CODES\\testImaAdd.db')
print(con.execute('select count (filename) from imlist').fetchone())
print(con.execute('select * from imlist').fetchone())
searcher = imagesearch.Searcher('D:\\Computer vision\\20241217CODES\\testImaAdd.db', voc)image_files = imlist[:5]for image_file in image_files:histogram = searcher.get_imhistogram(image_file)plt.figure()plt.title(image_file)plt.bar(range(len(histogram)), histogram)plt.xlabel('Word ID')plt.ylabel('Frequency')plt.show()

2.4.2 结果展示

如图5所示,对数据集中的所有图像进行量化,为所有图像创建索引,再遍历所有的图像,将它们的特征投影到词汇上,最终提交到数据库保存下来(如图6)。图7、图8展示了部分图像的频率直方图。

图5
图6
图7
图8
2.5 用一幅图像查询

2.5.1 实验代码

import pickle
from PCV.imagesearch import imagesearch
from PCV.geometry import homography
from PCV.tools.imtools import get_imlist
import numpy as np
import cv2
import warnings
warnings.filterwarnings("ignore")imlist = get_imlist(r'D:\Computer vision\20241217dataset')
nbr_images = len(imlist)
featlist = [imlist[i][:-3] + 'sift' for i in range(nbr_images)]with open(r'D:\Computer vision\20241217dataset\vocabulary50.pkl', 'rb') as f:voc = pickle.load(f, encoding='iso-8859-1')src = imagesearch.Searcher(r'D:\Computer vision\20241217CODES\testImaAdd.db', voc)q_ind = 3
nbr_results = 10res_reg = [w[1] for w in src.query(imlist[q_ind])[:nbr_results]] 
print('top matches (regular):', res_reg)img = cv2.imread(imlist[q_ind])
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp, q_descr = sift.detectAndCompute(gray, None)
q_locs = np.array([[kp[i].pt[0], kp[i].pt[1]] for i in range(len(kp))])
fp = homography.make_homog(q_locs[:, :2].T)model = homography.RansacModel()
rank = {}bf = cv2.BFMatcher() 
for ndx in res_reg[1:]:if ndx >= len(imlist):print(f"Index {ndx} is out of range for imlist with length {len(imlist)}")continueimg = cv2.imread(imlist[ndx])gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)kp, descr = sift.detectAndCompute(gray, None)locs = np.array([[kp[i].pt[0], kp[i].pt[1]] for i in range(len(kp))])matches = bf.knnMatch(q_descr, descr, k=2)good_matches = []for m, n in matches:if m.distance < 0.75 * n.distance:good_matches.append(m)ind = [m.queryIdx for m in good_matches]ind2 = [m.trainIdx for m in good_matches]tp = homography.make_homog(locs[:, :2].T)try:H, inliers = homography.H_from_ransac(fp[:, ind], tp[:, ind2], model, match_theshold=4)except:inliers = []# store inlier countrank[ndx] = len(inliers)sorted_rank = sorted(rank.items(), key=lambda t: t[1], reverse=True)
res_geom = [res_reg[0]] + [s[0] for s in sorted_rank]
print('top matches (homography):', res_geom)def calculate_similarity(query_index, result_indices, imlist):similarities = []for res_index in result_indices:if res_index >= len(imlist):print(f"Index {res_index} is out of range for imlist with length {len(imlist)}")continueimg1 = cv2.imread(imlist[query_index])img2 = cv2.imread(imlist[res_index])gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(gray1, None)kp2, des2 = sift.detectAndCompute(gray2, None)bf = cv2.BFMatcher()matches = bf.knnMatch(des1, des2, k=2)good_matches = []for m, n in matches:if m.distance < 0.75 * n.distance:good_matches.append(m)similarity = len(good_matches) / min(len(kp1), len(kp2))similarities.append((res_index, similarity))return similaritiesquery_index = q_ind
result_indices = res_reg + res_geom
similarities = calculate_similarity(query_index, result_indices, imlist)print("Similarity scores:")
for index, score in similarities:print(f"Image {index}: {score:.4f}")imagesearch.plot_results(src, res_reg)
imagesearch.plot_results(src, res_geom)
imagesearch.plot_results(src, res_reg[:6])
imagesearch.plot_results(src, res_geom[:6])  

2.5.2  结果展示

如图9所示,根据给定的查询图像索引q_ind,执行常规查询,返回前nbr_results个匹配结果,并打印这些结果以及可视化图片。

图 9 维度=50(常规排序)

如图10所示,使用 RANSAC 模型拟合单应性找到与查询图像几何一致的候选图像。

图 10 维度=50(重排序)

 如图11所示,计算查询图像与候选图像之间的相似度分数,并返回一个包含相似度分数的列表。

图11

当生成不同维度视觉词典时,常规排序结果如图12所示。

图 12 维度=10(常规排序)

三、实验小结

图像检索是一项重要的计算机视觉任务,它在根据用户的输入(如图像或关键词),从图像数据库中检索出最相关的图像。Bag of Feature 是一种图像特征提取方法,参考Bag of Words的思路,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。同时从图像抽象出很多具有代表性的「关键词」,形成一个字典,再统计每张图片中出现的「关键词」数量,得到图片的特征向量。

http://www.dtcms.com/wzjs/21780.html

相关文章:

  • 网站建设用什么软件做贴吧高级搜索
  • 网站设计制作从哪里学起电话营销外包公司
  • 做网站建设需要会哪些企业网站建设多少钱
  • 昆明百度智能建站seo搜索引擎优化是什么意思
  • 网页版微信二维码扫描搜索引擎优化技术
  • 中国最新军事新闻西陆网seo北京
  • 网站想更换服务器怎么做上海seo顾问
  • 移动互联网站设计师淘宝产品关键词排名查询
  • 无极官方网站下载昆山seo网站优化软件
  • 阜宁网站建设seo关键词排名优化app
  • 东莞个人网站制作广告营销包括哪些方面
  • 东莞快速建站平台新网络营销
  • 同行做的好的网站成都网站制作费用
  • 怎么给网站做网站地图重庆seo排名技术
  • 西安做网站找哪家公司好微信指数是搜索量吗
  • 怎么用ps做网站banner如何推广网站方法
  • 番禺网站开发平台百度运营平台
  • 让别人做网站要注意什么外包客服平台
  • 东莞石龙网站建设手机创建网站教程
  • 专门做澳大利亚项目的网站淘宝一个关键词要刷多久
  • 公司网站域名做邮箱网站建设哪家好公司
  • 手机网站地址武汉网站seo德升
  • 怎么删除织梦做的网站黄山网络推广公司
  • 莱芜免费发布信息网廊坊seo管理
  • 做的公司网站风格跟样式和别人一样郑州seo优化阿亮
  • 深圳 b2c 网站建设什么是白帽seo
  • 公司做网站计入那个科目seo网站推广有哪些
  • 深圳做网站 肖先生连接交换
  • 做seo要明白网站内企业网络营销策划
  • 如何快速建网站舆情报告