当前位置: 首页 > wzjs >正文

珠海门户网站建设多少钱申请域名的方法和流程

珠海门户网站建设多少钱,申请域名的方法和流程,做网站的一般多少钱,怎么做刷会员网站SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测 目录 SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现RIME-CNN-LSTM-Mutilhead-Attention霜冰算法…

SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测

目录

    • SCI一区级 | Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现RIME-CNN-LSTM-Mutilhead-Attention霜冰算法优化卷积长短期记忆神经网络融合多头注意力机制多变量多步时间序列预测,开普勒算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。
LSTM神经元个数:LSTM是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的LSTM神经元可以提高模型的学习能力,但可能导致过拟合。
学习率:学习率是训练深度学习模型时的一个关键超参数,它控制每次参数更新的步长。学习率过大可能导致模型不稳定和发散,学习率过小可能导致训练过慢或陷入局部最小值。
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法,现如今还未有相关的优化算法应用文献。RIME主要对霜冰的形成过程进行模拟,将其巧妙地应用于算法搜索领域。

在这里插入图片描述

2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);
3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述

4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价,适用领域:负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信博主回复Matlab实现RIME-CNN-LSTM-Mutilhead-Attention多变量多步时序预测
%% 清除内存、清除屏幕
clc
clear
%% 导入数据
data = xlsread('负荷数据.xlsx');
rng(0)
%%  数据分析
daynum=30;                                             %% 数据量较大,选取daynum天的数据
step=96;                                               %% 多步预测
data =data(end-step*daynum+1:end,:);                 
W_data  = data(:,end)';                                %% 实际值输出:每天24小时,每小时4个采样点
%%  数据归一化
[features, ~] = mapminmax(Features, 0, 1);
[w_data, ps_output]  = mapminmax(W_data, 0, 1);
%%  数据平铺为4-D
LP_Features =  double(reshape(features,fnum,step,1,daynum));    %% 特征数据格式
LP_WindData  = double(reshape(w_data,step,1,1,daynum));      %% 实际数据格式%% 格式转换为cell
NumDays  = daynum;                                         %% 数据总天数为daynum天
for i=1:NumDaysFeaturesData{1,i} = LP_Features(:,:,1,i);
endfor i=1:NumDaysRealData{1,i} = LP_WindData(:,:,1,i);
end%% 划分数据
XTrain = FeaturesData(:,1:daynum-2);                         %% 训练集输入为 1-(daynum-2)天的特征
YTrain = RealData(:,2:daynum-1);                             %% 训练集输出为 2-(daynum-1)天的实际值        Best_rime = zeros(1, dim);Best_rime_rate = inf; % 用于最大化问题,请将此值改为 -inffor i = 1:dimRimepop(:, i) = lb(i) + rand(SearchAgents_no, 1) .* (ub(i) - lb(i));   % 初始种群endLb = lb .* ones(1, dim); % 下边界Ub = ub .* ones(1, dim); % 上边界it = 1; % 迭代次数Convergence_curve = zeros(1, Max_iter);Rime_rates = zeros(1, SearchAgents_no); % 初始化适应度值newRime_rates = zeros(1, SearchAgents_no);W = 5; % 软霜冰参数,在论文第4.3.1节中有详细讨论% 计算初始位置的适应度值for i = 1:SearchAgents_no[Rime_rates(1, i),Value{i},Net{i},Info{i}] = fobj(Rimepop(i, :)); % 计算每个搜索体的适应度值% 进行贪婪选择if Rime_rates(1, i) < Best_rime_rateBest_rime_rate = Rime_rates(1, i);Best_rime = Rimepop(i, :);bestPred = Value{i};bestNet = Net{i};bestInfo = Info{i};endend% 主循环while it <= Max_iterRimeFactor = (rand - 0.5) * 2 * cos((pi * it / (Max_iter / 10))) * (1 - round(it * W / Max_iter) / W); % 公式(3),(4),(5)的参数E = (it / Max_iter)^0.5; % 公式(6)newRimepop = Rimepop; % 记录新的种群normalized_rime_rates = normr(Rime_rates); % 公式(7)的参数for i = 1:SearchAgents_nofor j = 1:dim% 软霜冰搜索策略r1 = rand();if r1 < EnewRimepop(i, j) = Best_rime(1, j) + RimeFactor * ((Ub(j) - Lb(j)) * rand + Lb(j)); % 公式(3)end% 硬霜冰穿刺机制r2 = rand();if r2 < normalized_rime_rates(i)newRimepop(i, j) = Best_rime(1, j); % 公式(7)endendend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.dtcms.com/wzjs/11478.html

相关文章:

  • java网站开发流程微网站
  • 为什么建设营销型网站网络营销案例
  • 科技医疗网站建设深圳营销型网站定制
  • 南通网站建设规划百度一下你就知道啦
  • 贵阳网站建设公司网页开发公司
  • opencart 构建电子商务网站今日热搜榜官网
  • 外贸公司代理注册上海专业seo排名优化
  • 金华企业做网站外贸seo网站建设
  • 深圳品牌营销型网站建设seo短视频加密路线
  • wordpress 清空 demo北京seo代理计费
  • 建立一个网店网站颜色广告
  • 做电影网站会违法吗seo官网
  • 做网站首页的要素网站推广和优化系统
  • pandorabox做网站青岛谷歌推广
  • 西安网站建设公司排百度一下你就知道了百度一下
  • 怎么把dw做的网站分享给别icp备案查询官网
  • 淘宝联盟的购物网站怎么做百度软文推广怎样收费
  • 龙华网站建设yihekj长沙seo优化
  • 自己怎么做彩票网站吗惠州网站营销推广
  • 建设网站入不入无形资产谷歌关键词搜索工具
  • 为什么自己花钱做的网站竟然不是自己的 (友情链接有哪些作用
  • 洛阳制作网站公司小说关键词生成器
  • 房子网站有哪些美国搜索引擎排名
  • 机关网站机制建设情况抖音引流推广怎么做
  • 开发网站商城软文范例大全500字
  • 官方网站建设 都来磐石网络网站制作厂家有哪些
  • 网站建设万网互联网推广软件
  • 网站解析是做a记录吗搜狗网页搜索
  • wordpress网站插件南京今日新闻头条
  • 建立网站可行性百度有免费推广广告