当前位置: 首页 > news >正文

Cesium 大数据量优化加载方案

Cesium 大数据量优化加载方案

1. 使用 Primitive API 替代 Entity API

Entity API 虽然简单,但性能较差。对于大量数据,应使用 Primitive API。

// ❌ 不推荐:Entity API(性能差)
entities.forEach(data => {viewer.entities.add({polygon: {hierarchy: Cesium.Cartesian3.fromDegreesArray(data.coordinates),material: Cesium.Color.RED}});
});// ✅ 推荐:Primitive API(性能好)
const instances = [];
entities.forEach(data => {instances.push(new Cesium.GeometryInstance({geometry: new Cesium.PolygonGeometry({polygonHierarchy: new Cesium.PolygonHierarchy(Cesium.Cartesian3.fromDegreesArray(data.coordinates))}),id: data.id,attributes: {color: Cesium.ColorGeometryInstanceAttribute.fromColor(Cesium.Color.RED)}}));
});viewer.scene.primitives.add(new Cesium.Primitive({geometryInstances: instances,appearance: new Cesium.PerInstanceColorAppearance({closed: true})
}));

2. 数据分批加载(异步加载)

async function loadDataInBatches(allData, batchSize = 1000) {const totalBatches = Math.ceil(allData.length / batchSize);for (let i = 0; i < totalBatches; i++) {const start = i * batchSize;const end = Math.min(start + batchSize, allData.length);const batch = allData.slice(start, end);// 加载当前批次loadBatch(batch);// 显示进度console.log(`加载进度: ${((i + 1) / totalBatches * 100).toFixed(1)}%`);// 让出主线程,避免UI卡顿await new Promise(resolve => setTimeout(resolve, 0));}
}function loadBatch(batchData) {const instances = batchData.map(data => new Cesium.GeometryInstance({geometry: createGeometry(data),id: data.id,attributes: {color: Cesium.ColorGeometryInstanceAttribute.fromColor(data.color)}}));viewer.scene.primitives.add(new Cesium.Primitive({geometryInstances: instances,appearance: new Cesium.PerInstanceColorAppearance()}));
}

3. 使用聚合(Clustering)处理大量点数据

// 对于大量点数据,使用聚合显示
const dataSource = await Cesium.GeoJsonDataSource.load(url, {clampToGround: true
});viewer.dataSources.add(dataSource);// 启用聚合
dataSource.clustering.enabled = true;
dataSource.clustering.pixelRange = 50; // 聚合像素范围
dataSource.clustering.minimumClusterSize = 3; // 最小聚合数量// 自定义聚合样式
dataSource.clustering.clusterEvent.addEventListener((entities, cluster) => {cluster.label.show = true;cluster.label.text = entities.length.toString();cluster.label.font = '16px sans-serif';cluster.label.fillColor = Cesium.Color.WHITE;cluster.label.outlineColor = Cesium.Color.BLACK;cluster.label.outlineWidth = 2;cluster.billboard.show = true;cluster.billboard.image = createClusterIcon(entities.length);cluster.billboard.width = 40;cluster.billboard.height = 40;
});

4. LOD(Level of Detail)按距离加载

class LODDataManager {constructor(viewer) {this.viewer = viewer;this.loadedTiles = new Map();this.allData = []; // 所有数据// 监听相机变化this.viewer.camera.changed.addEventListener(() => {this.updateVisibleData();});}updateVisibleData() {const cameraHeight = this.viewer.camera.positionCartographic.height;// 根据相机高度决定显示精度let lodLevel;if (cameraHeight > 1000000) {lodLevel = 'low'; // 只显示少量数据} else if (cameraHeight > 100000) {lodLevel = 'medium';} else {lodLevel = 'high'; // 显示所有细节}this.loadDataByLOD(lodLevel);}loadDataByLOD(level) {// 根据LOD级别加载不同精度的数据const dataToLoad = this.filterDataByLOD(this.allData, level);this.renderData(dataToLoad);}
}

5. 使用 3D Tiles 格式

对于超大数据量,转换为 3D Tiles 格式是最优方案:

// 加载 3D Tiles
const tileset = await Cesium.Cesium3DTileset.fromUrl('path/to/tileset.json');
viewer.scene.primitives.add(tileset);// 3D Tiles 自动处理LOD和裁剪
tileset.maximumScreenSpaceError = 16; // 控制精度,值越小越精细
tileset.maximumMemoryUsage = 512; // 最大内存使用(MB)

6. 视口裁剪(Frustum Culling)

// 只加载视口内的数据
function loadVisibleData(allData) {const frustum = viewer.camera.frustum;const cullingVolume = frustum.computeCullingVolume(viewer.camera.position,viewer.camera.direction,viewer.camera.up);const visibleData = allData.filter(data => {const position = Cesium.Cartesian3.fromDegrees(data.lon, data.lat);const boundingSphere = new Cesium.BoundingSphere(position, 1000);// 检查是否在视口内return cullingVolume.computeVisibility(boundingSphere) !== Cesium.Intersect.OUTSIDE;});renderData(visibleData);
}

7. 使用 Web Worker 处理数据

// main.js
const worker = new Worker('dataProcessor.worker.js');worker.postMessage({type: 'processGeoJSON',data: largeGeoJSONData
});worker.onmessage = (e) => {const processedData = e.data;renderDataToCesium(processedData);
};// dataProcessor.worker.js
self.onmessage = (e) => {if (e.data.type === 'processGeoJSON') {const processed = processData(e.data.data);self.postMessage(processed);}
};function processData(data) {// 在 worker 中处理数据转换、简化等return data.map(item => ({positions: simplifyCoordinates(item.coordinates),properties: item.properties}));
}

8. 几何简化

// 使用 Turf.js 简化几何体
import * as turf from '@turf/turf';function simplifyGeometry(coordinates, tolerance = 0.01) {const line = turf.lineString(coordinates);const simplified = turf.simplify(line, { tolerance: tolerance });return simplified.geometry.coordinates;
}// 或使用 Douglas-Peucker 算法
function douglasPeucker(points, epsilon) {// 实现 Douglas-Peucker 简化算法// ...
}

9. 使用 Billboard/Label Collection

对于大量点和标注:

// ❌ 不推荐
points.forEach(point => {viewer.entities.add({position: Cesium.Cartesian3.fromDegrees(point.lon, point.lat),billboard: { image: 'pin.png' }});
});// ✅ 推荐:使用 Collection
const billboards = viewer.scene.primitives.add(new Cesium.BillboardCollection());points.forEach(point => {billboards.add({position: Cesium.Cartesian3.fromDegrees(point.lon, point.lat),image: 'pin.png'});
});

10. 完整优化示例

class OptimizedDataLoader {constructor(viewer) {this.viewer = viewer;this.primitives = [];this.batchSize = 1000;}async loadLargeDataset(data) {// 1. 数据预处理(在 Worker 中)const processedData = await this.preprocessInWorker(data);// 2. 几何简化const simplifiedData = this.simplifyGeometries(processedData);// 3. 分批加载await this.loadInBatches(simplifiedData);// 4. 设置相机事件监听,实现LODthis.setupLOD();}async preprocessInWorker(data) {return new Promise((resolve) => {const worker = new Worker('processor.worker.js');worker.postMessage(data);worker.onmessage = (e) => resolve(e.data);});}simplifyGeometries(data) {const cameraHeight = this.viewer.camera.positionCartographic.height;const tolerance = cameraHeight / 1000000; // 动态容差return data.map(item => ({...item,coordinates: this.simplify(item.coordinates, tolerance)}));}async loadInBatches(data) {const batches = Math.ceil(data.length / this.batchSize);for (let i = 0; i < batches; i++) {const batch = data.slice(i * this.batchSize,(i + 1) * this.batchSize);this.loadBatch(batch);// 显示进度this.updateProgress((i + 1) / batches * 100);// 避免阻塞UIawait new Promise(resolve => requestAnimationFrame(resolve));}}loadBatch(batch) {const instances = batch.map(item => new Cesium.GeometryInstance({geometry: this.createGeometry(item),id: item.id,attributes: {color: Cesium.ColorGeometryInstanceAttribute.fromColor(Cesium.Color.fromCssColorString(item.color))}}));const primitive = this.viewer.scene.primitives.add(new Cesium.Primitive({geometryInstances: instances,appearance: new Cesium.PerInstanceColorAppearance({closed: true}),asynchronous: true // 异步创建}));this.primitives.push(primitive);}setupLOD() {this.viewer.camera.changed.addEventListener(() => {const height = this.viewer.camera.positionCartographic.height;// 根据高度动态调整显示this.primitives.forEach((primitive, index) => {primitive.show = this.shouldShowAtHeight(index, height);});});}shouldShowAtHeight(index, height) {// LOD 逻辑if (height > 1000000) {return index % 10 === 0; // 只显示 10%} else if (height > 100000) {return index % 2 === 0; // 显示 50%}return true; // 显示全部}
}// 使用
const loader = new OptimizedDataLoader(viewer);
await loader.loadLargeDataset(yourLargeDataset);

性能对比总结

方案适用场景性能提升
Entity → Primitive所有场景5-10倍
分批加载初始加载避免卡顿
Clustering大量点数据(>10000)10-100倍
LOD多尺度查看2-5倍
3D Tiles超大数据(百万级)100+倍
Collection API大量Billboard/Label3-5倍
几何简化复杂几何2-3倍
http://www.dtcms.com/a/606763.html

相关文章:

  • 网站卖东西怎么做粉丝帮女流做的网站
  • 网站站外引流怎么做有什么做视频的免费素材网站好
  • Visual Studio Code安装
  • 短剧小程序开发全攻略:技术选型与实现思路
  • 淘宝客网站用什么软件做php网站上传教程
  • LSTM论文解读
  • 基于Python+Django+双协同过滤豆瓣电影推荐系统 协同过滤推荐算法 爬虫 大数据毕业设计(源码+文档)✅
  • 建设一个商城式网站可以吗网站列表效果
  • Telegram营销工具技术指南:构建高效社群运营体系
  • Python3 列表详解
  • 太极指令集架构(TCIS)v1.1与主流指令集比较研究报告
  • 自己怎么创网站做网站需要人在看吗
  • Java语言编译器 | 深入理解Java编译器的工作原理及优化方法
  • 【算法】主流算法
  • 深圳商城软件开发如何做好网站内容优化
  • 建设网站前的市场分析怎么写西安营销网站建设
  • 南充网站建设服务汕头网站排名推广
  • SpringMVC执行流程源码分析之二
  • 网站查询备案网站群建设调研报告
  • TreeSet的排序方式
  • FILE的本质
  • 5.5、Python-字符串去重
  • (论文速读)基于拉曼光谱深度学习的改进拉曼半定量分析成像去噪方法
  • 自然的算法:从生物进化到智能优化 —— 遗传算法的诗意与硬核“
  • wp企业网站模板网站模块建设方案
  • 使用腾讯云建设网站教程黄页网站建设
  • 基于微信小程序的民宿预定系统
  • 网站建设域名空间网站建设项目签约仪式举行
  • 做网站应该用什么数据库做五金有哪些网站推广
  • 积分法对IMU(陀螺仪加速度计) LSB(Least Significant Bit)验证