当前位置: 首页 > news >正文

长沙专业网站建设服务网站代备

长沙专业网站建设服务,网站代备,网站旁边的小图标怎么做的,做网站可以设账户吗&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦&#x1f91…
&&大数据学习&&
🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门
💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞

1. 执行引擎

Hive

  • 基于 MapReduce 或 Tez

    • Hive 最初是基于 MapReduce 的,MapReduce 是一种批处理框架,适合处理大规模数据,但延迟较高。

    • 即使后来引入了 Tez 作为执行引擎,Hive 仍然是以批处理为核心,不适合低延迟查询。

  • 中间结果写磁盘

    • MapReduce 和 Tez 在执行过程中会将中间结果写入磁盘,导致额外的 I/O 开销。

Impala

  • 基于 MPP(大规模并行处理)架构

    • Impala 采用 MPP 架构,类似于传统的关系型数据库(如 Greenplum、Vertica),能够在内存中并行处理查询。

  • 全内存计算

    • Impala 的查询执行过程主要在内存中进行,避免了频繁的磁盘 I/O,显著提高了查询速度。

  • 无 MapReduce 开销

    • Impala 不依赖 MapReduce,直接读取 HDFS 数据并进行计算,减少了额外的调度和任务管理开销。


2. 查询优化

Hive

  • 优化器较弱

    • Hive 的查询优化器相对简单,生成的执行计划可能不够高效。

  • 动态代码生成

    • Hive 在运行时需要将 HiveQL 转换为 MapReduce 或 Tez 任务,增加了额外的开销。

Impala

  • 强大的查询优化器

    • Impala 的查询优化器更先进,能够生成更高效的执行计划。

  • LLVM 编译

    • Impala 使用 LLVM(低级虚拟机)将查询编译为本地机器代码,进一步提高了执行效率。

  • 谓词下推

    • Impala 支持谓词下推(Predicate Pushdown),在数据扫描阶段就过滤掉不必要的数据,减少了数据传输和处理的开销。


3. 数据访问

Hive

  • 依赖 HDFS

    • Hive 的数据存储在 HDFS 上,每次查询都需要从 HDFS 读取数据,延迟较高。

  • 数据格式支持

    • 虽然 Hive 支持多种数据格式(如 ORC、Parquet),但某些格式的读取效率不如 Impala。

Impala

  • 直接访问 HDFS

    • Impala 直接读取 HDFS 数据,避免了 MapReduce 的额外开销。

  • 优化数据格式

    • Impala 对 Parquet 和 ORC 等列式存储格式进行了深度优化,能够快速读取和处理数据。

  • 数据本地性

    • Impala 充分利用数据本地性(Data Locality),在数据所在的节点上执行计算,减少了数据传输的开销。


4. 资源管理

Hive

  • 依赖 YARN

    • Hive 的资源管理依赖于 YARN,YARN 的调度和资源分配可能引入额外的延迟。

  • 任务启动开销

    • 每次查询都需要启动 MapReduce 或 Tez 任务,增加了任务启动和调度的开销。

Impala

  • 独立资源管理

    • Impala 不依赖 YARN,直接管理资源,减少了调度和资源分配的开销。

  • 长服务进程

    • Impala 的守护进程(Impala Daemon)是长期运行的,查询可以直接在这些进程上执行,避免了任务启动的开销。


5. 并发处理

Hive

  • 并发能力有限

    • Hive 的并发能力受限于 MapReduce 或 Tez 的调度机制,高并发场景下性能下降明显。

Impala

  • 高并发支持

    • Impala 的 MPP 架构支持高并发查询,能够在多个节点上并行处理查询请求。

  • 资源隔离

    • Impala 支持资源池(Resource Pool),可以为不同的查询分配不同的资源,提高并发性能。


6. 功能差异

Hive

  • 功能丰富

    • Hive 支持复杂的数据类型、UDF 和事务处理,功能更加全面。

  • 适合批处理

    • Hive 的设计目标是批处理,适合大规模数据离线分析。

Impala

  • 功能精简

    • Impala 的功能相对精简,专注于 OLAP 场景,适合快速查询。

  • 实时查询

    • Impala 的设计目标是低延迟查询,适合实时分析和交互式查询。


总结

特性HiveImpala
执行引擎基于 MapReduce 或 Tez,批处理基于 MPP 架构,全内存计算
查询优化优化器较弱,动态代码生成强大的查询优化器,LLVM 编译
数据访问依赖 HDFS,中间结果写磁盘直接访问 HDFS,优化数据格式
资源管理依赖 YARN,任务启动开销大独立资源管理,长服务进程
并发能力并发能力有限支持高并发,资源隔离
功能功能丰富,适合批处理功能精简,适合实时查询

Impala 比 Hive 快的原因

  1. 全内存计算:避免了磁盘 I/O 开销。

  2. MPP 架构:并行处理能力强。

  3. LLVM 编译:生成高效的本地机器代码。

  4. 直接访问 HDFS:减少了额外的调度和任务管理开销。

  5. 强大的查询优化器:生成更高效的执行计划。

Impala 更适合需要低延迟和高并发的实时查询场景,而 Hive 更适合大规模数据批处理任务。

http://www.dtcms.com/a/558677.html

相关文章:

  • 开始改变第七天 第一个面试
  • 网站资源做缓存做网站开发需要的笔记本配置
  • 搜索引擎网站盈利模式长沙旅游必去的八个景点
  • 如何写出让业务满意的性能测试报告?
  • 网站做数据分析整站优化seo平台
  • 烟台网站建设服务网站百度搜索不到
  • 做网站除了dw网站域名注册备案教程
  • 南华大学城市建设学院网站注册企业邮箱哪家最好
  • C++隐藏机制——extern 的边界:声明、定义与符号分配
  • 为什么选择做游戏网站做国外销售都上什么网站
  • C语言完成Socket通信
  • 关于Delphi的一次吵架的后续
  • 深圳网站制作公司兴田德润官网多少中企动力为什么留不住人
  • 怎样制造网站图片教程手机建站源码
  • 视频网站建设流程vps 内存影响 网站
  • 网站内容规划ssh做的大型网站
  • 网站正则表达式怎么做怎么样才能自己做网站打广告
  • 快速部署远程vnc桌面 -docker部署
  • 网站建设运行状况做网站需要服务器还是主机
  • 网站信息核验单南充二手房最新出售信息
  • 开发 网站 团队建设摩托车官网官方网站
  • 易经风水传承者【谷晟阳】
  • 自己做培训需要网站吗甘肃建设厅网站注入
  • 网站自行备案成都附近旅游景区哪里好玩
  • wordpress 注册登陆插件外贸seo是什么意思啊
  • 网站开发调查问卷电影片头在线制作网站
  • 网站制作公司小邓管理咨询公司工作简报
  • 做一个网站多长时间专门做悬疑推理小说的阅读网站
  • 网站图片像素多少上海优化网站
  • 江苏海通建设有限公司网站广西网络广播电视台直播