图形学曲线c++简单实现
图形学中的曲线常用于建模、动画、路径规划等领域,而在 C++ 中实现这些曲线通常依赖于数学库、图形库(如 OpenGL、DirectX、Qt 等)和自定义算法。下面我将总结常见的图形学曲线,并提供一些 C++ 实现的思路和代码示例。
1. 贝塞尔曲线(Bezier Curve)
定义:贝塞尔曲线是一类常用的平滑曲线,通常用于矢量图形、路径动画、字体设计等。
C++ 实现:可以通过递归的方式实现贝塞尔曲线的计算,或者通过插值法计算每一个点。
C++ 实现代码:
#include <iostream>
#include <vector>
struct Point {
float x, y;
};
Point bezier(float t, const Point& p0, const Point& p1, const Point& p2, const Point& p3) {
Point result;
float u = 1 - t;
result.x = u * u * u * p0.x + 3 * u * u * t * p1.x + 3 * u * t * t * p2.x + t * t * t * p3.x;
result.y = u * u * u * p0.y + 3 * u * u * t * p1.y + 3 * u * t * t * p2.y + t * t * t * p3.y;
return result;
}
int main() {
Point p0 = {0, 0}, p1 = {1, 2}, p2 = {3, 3}, p3 = {4, 0};
for (float t = 0; t <= 1; t += 0.1f) {
Point p = bezier(t, p0, p1, p2, p3);
std::cout << "t = " << t << " => Point: (" << p.x << ", " << p.y << ")\n";
}
return 0;
}
2. B样条曲线(B-Spline Curve)
定义:B样条曲线通过加权控制点和基函数来生成曲线,常用于精确的路径拟合和建模。
C++ 实现:计算B样条曲线需要用到基函数,C++中可以通过递归或者迭代方法计算每个控制点的加权和。
C++ 实现代码:
#include <iostream>
#include <vector>
struct Point {
float x, y;
};
float basisFunction(int i, int p, float t, const std::vector<float>& knots) {
if (p == 0) {
return (knots[i] <= t && t < knots[i + 1]) ? 1.0f : 0.0f;
}
float denom1 = knots[i + p] - knots[i];
float denom2 = knots[i + p + 1] - knots[i + 1];
float term1 = (denom1 == 0) ? 0 : (t - knots[i]) / denom1 * basisFunction(i, p - 1, t, knots);
float term2 = (denom2 == 0) ? 0 : (knots[i + p + 1] - t) / denom2 * basisFunction(i + 1, p - 1, t, knots);
return term1 + term2;
}
Point bSpline(float t, const std::vector<Point>& controlPoints, const std::vector<float>& knots, int p) {
Point result = {0, 0};
int n = controlPoints.size();
for (int i = 0; i < n; ++i) {
float weight = basisFunction(i, p, t, knots);
result.x += controlPoints[i].x * weight;
result.y += controlPoints[i].y * weight;
}
return result;
}
int main() {
std::vector<Point> controlPoints = {{0, 0}, {1, 2}, {3, 3}, {4, 0}};
std::vector<float> knots = {0, 0, 0, 1, 2, 3, 3, 3}; // For a cubic B-spline
int p = 3; // Degree of B-spline
for (float t = 0; t <= 3; t += 0.1f) {
Point p = bSpline(t, controlPoints, knots, p);
std::cout << "t = " << t << " => Point: (" << p.x << ", " << p.y << ")\n";
}
return 0;
}
3. NURBS曲线(Non-Uniform Rational B-Splines)
定义:NURBS是B样条的扩展,允许控制点和基函数具有不同的权重。它可以表示更复杂的几何形状。
C++ 实现:NURBS曲线与B样条曲线的区别在于引入了权重,计算时需要对每个控制点赋予权重。
C++ 实现代码:
#include <iostream>
#include <vector>
struct Point {
float x, y;
float w; // Weight for NURBS
};
Point nurbs(float t, const std::vector<Point>& controlPoints, const std::vector<float>& knots, int p) {
Point result = {0, 0, 0};
float denominator = 0;
int n = controlPoints.size();
for (int i = 0; i < n; ++i) {
float weight = basisFunction(i, p, t, knots) * controlPoints[i].w;
result.x += controlPoints[i].x * weight;
result.y += controlPoints[i].y * weight;
denominator += weight;
}
result.x /= denominator;
result.y /= denominator;
return result;
}
int main() {
std::vector<Point> controlPoints = {{0, 0, 1}, {1, 2, 2}, {3, 3, 1}, {4, 0, 1}};
std::vector<float> knots = {0, 0, 0, 1, 2, 3, 3, 3}; // For cubic NURBS
int p = 3; // Degree of NURBS
for (float t = 0; t <= 3; t += 0.1f) {
Point p = nurbs(t, controlPoints, knots, p);
std::cout << "t = " << t << " => Point: (" << p.x << ", " << p.y << ")\n";
}
return 0;
}
4. 样条曲线(Spline Curve)
定义:样条曲线是通过多个控制点和插值方法来生成平滑曲线,常见的是立方样条。
C++ 实现:通常用矩阵方程来求解立方样条的系数,或使用已有的库来处理样条插值。
C++ 实现思路:
- 构造样条的三次多项式。
- 求解系数并插值。
5. Catmull-Rom曲线
定义:Catmull-Rom曲线是一种用于插值的曲线,通过控制点生成平滑曲线,适用于动画和路径插值。
C++ 实现代码:
#include <iostream>
#include <vector>
struct Point {
float x, y;
};
Point catmullRom(float t, const Point& p0, const Point& p1, const Point& p2, const Point& p3) {
float t2 = t * t;
float t3 = t2 * t;
Point result;
result.x = 0.5f * ((2 * p1.x) + (-p0.x + p2.x) * t + (2 * p0.x - 5 * p1.x + 4 * p2.x - p3.x) * t2 + (-p0.x + 3 * p1.x - 3 * p2.x + p3.x) * t3);
result.y = 0.5f * ((2 * p1.y) + (-p0.y + p2.y) * t + (2 * p0.y - 5 * p1.y + 4 * p2.y - p3.y) * t2 + (-p0.y + 3 * p1.y - 3 * p2.y + p3.y) * t3);
return result;
}
int main()