拉普拉斯方程傅里叶积分解法
题目
问题 9. 在带状区域 {(x,y):0<x<1, −∞<y<∞} \{(x, y) : 0 < x < 1, \, -\infty < y < \infty\} {(x,y):0<x<1,−∞<y<∞} 中求解
Δu=0,
\Delta u = 0,
Δu=0,
u∣x=0=0,
u|_{x=0} = 0,
u∣x=0=0,
u∣x=1={1−y2∣y∣≤1,0∣y∣≥1,
u|_{x=1} =
\begin{cases}
1 - y^2 & |y| \leq 1, \\
0 & |y| \geq 1,
\end{cases}
u∣x=1={1−y20∣y∣≤1,∣y∣≥1,
max∣u∣<∞.
\max |u| < \infty.
max∣u∣<∞.
解应以适当的傅里叶积分形式表示。
解答
考虑 Laplace 方程 Δu=0 \Delta u = 0 Δu=0 在带状区域 0<x<1 0 < x < 1 0<x<1, −∞<y<∞ -\infty < y < \infty −∞<y<∞ 中的边值问题。边界条件为:
- u(0,y)=0 u(0, y) = 0 u(0,y)=0,
- u(1,y)=g(y) u(1, y) = g(y) u(1,y)=g(y),其中 g(y)={1−y2∣y∣≤10∣y∣>1 g(y) = \begin{cases} 1 - y^2 & |y| \leq 1 \\ 0 & |y| > 1 \end{cases} g(y)={1−y20∣y∣≤1∣y∣>1,
- 解需有界,即 max∣u∣<∞ \max |u| < \infty max∣u∣<∞.
由于区域在 y y y 方向无限,且边界条件非周期性,使用傅里叶变换方法求解。对变量 y y y 应用傅里叶变换,定义:
u^(x,k)=∫−∞∞u(x,y)e−ikydy.
\hat{u}(x, k) = \int_{-\infty}^{\infty} u(x, y) e^{-i k y} dy.
u^(x,k)=∫−∞∞u(x,y)e−ikydy.
Laplace 方程 ∂2u∂x2+∂2u∂y2=0 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 ∂x2∂2u+∂y2∂2u=0 在变换后变为:
∂2u^∂x2−k2u^=0.
\frac{\partial^2 \hat{u}}{\partial x^2} - k^2 \hat{u} = 0.
∂x2∂2u^−k2u^=0.
此常微分方程的通解为:
u^(x,k)=A(k)ekx+B(k)e−kx.
\hat{u}(x, k) = A(k) e^{k x} + B(k) e^{-k x}.
u^(x,k)=A(k)ekx+B(k)e−kx.
代入边界条件 u(0,y)=0 u(0, y) = 0 u(0,y)=0,其傅里叶变换为 u^(0,k)=0 \hat{u}(0, k) = 0 u^(0,k)=0:
A(k)+B(k)=0 ⟹ B(k)=−A(k).
A(k) + B(k) = 0 \implies B(k) = -A(k).
A(k)+B(k)=0⟹B(k)=−A(k).
因此,
u^(x,k)=A(k)(ekx−e−kx)=2A(k)sinh(kx).
\hat{u}(x, k) = A(k) (e^{k x} - e^{-k x}) = 2A(k) \sinh(k x).
u^(x,k)=A(k)(ekx−e−kx)=2A(k)sinh(kx).
令 C(k)=2A(k) C(k) = 2A(k) C(k)=2A(k),则:
u^(x,k)=C(k)sinh(kx).
\hat{u}(x, k) = C(k) \sinh(k x).
u^(x,k)=C(k)sinh(kx).
代入边界条件 u(1,y)=g(y) u(1, y) = g(y) u(1,y)=g(y),其傅里叶变换为 u^(1,k)=g^(k) \hat{u}(1, k) = \hat{g}(k) u^(1,k)=g^(k):
C(k)sinh(k)=g^(k) ⟹ C(k)=g^(k)sinh(k).
C(k) \sinh(k) = \hat{g}(k) \implies C(k) = \frac{\hat{g}(k)}{\sinh(k)}.
C(k)sinh(k)=g^(k)⟹C(k)=sinh(k)g^(k).
故:
u^(x,k)=g^(k)sinh(kx)sinh(k).
\hat{u}(x, k) = \hat{g}(k) \frac{\sinh(k x)}{\sinh(k)}.
u^(x,k)=g^(k)sinh(k)sinh(kx).
反傅里叶变换给出解:
u(x,y)=12π∫−∞∞u^(x,k)eikydk=12π∫−∞∞g^(k)sinh(kx)sinh(k)eikydk.
u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(x, k) e^{i k y} dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{g}(k) \frac{\sinh(k x)}{\sinh(k)} e^{i k y} dk.
u(x,y)=2π1∫−∞∞u^(x,k)eikydk=2π1∫−∞∞g^(k)sinh(k)sinh(kx)eikydk.
其中 g^(k) \hat{g}(k) g^(k) 是 g(y) g(y) g(y) 的傅里叶变换:
g^(k)=∫−∞∞g(y)e−ikydy=∫−11(1−y2)e−ikydy.
\hat{g}(k) = \int_{-\infty}^{\infty} g(y) e^{-i k y} dy = \int_{-1}^{1} (1 - y^2) e^{-i k y} dy.
g^(k)=∫−∞∞g(y)e−ikydy=∫−11(1−y2)e−ikydy.
计算此积分。由于 g(y) g(y) g(y) 是偶函数(实值且对称),虚部积分为零,故:
g^(k)=∫−11(1−y2)cos(ky)dy=2∫01(1−y2)cos(ky)dy.
\hat{g}(k) = \int_{-1}^{1} (1 - y^2) \cos(k y) dy = 2 \int_{0}^{1} (1 - y^2) \cos(k y) dy.
g^(k)=∫−11(1−y2)cos(ky)dy=2∫01(1−y2)cos(ky)dy.
计算积分:
J(k)=∫01(1−y2)cos(ky)dy.
J(k) = \int_{0}^{1} (1 - y^2) \cos(k y) dy.
J(k)=∫01(1−y2)cos(ky)dy.
使用分部积分两次:
- 令 u=1−y2 u = 1 - y^2 u=1−y2, dv=cos(ky)dy dv = \cos(k y) dy dv=cos(ky)dy,则 du=−2ydy du = -2y dy du=−2ydy, v=sin(ky)k v = \frac{\sin(k y)}{k} v=ksin(ky)。
- 边界项为零,故:
J(k)=2k∫01ysin(ky)dy. J(k) = \frac{2}{k} \int_{0}^{1} y \sin(k y) dy. J(k)=k2∫01ysin(ky)dy. - 再令 u=y u = y u=y, dv=sin(ky)dy dv = \sin(k y) dy dv=sin(ky)dy,则 du=dy du = dy du=dy, v=−cos(ky)k v = -\frac{\cos(k y)}{k} v=−kcos(ky):
∫01ysin(ky)dy=[−ycos(ky)k]01+1k∫01cos(ky)dy=−coskk+sinkk2. \int_{0}^{1} y \sin(k y) dy = \left[ -\frac{y \cos(k y)}{k} \right]_{0}^{1} + \frac{1}{k} \int_{0}^{1} \cos(k y) dy = -\frac{\cos k}{k} + \frac{\sin k}{k^2}. ∫01ysin(ky)dy=[−kycos(ky)]01+k1∫01cos(ky)dy=−kcosk+k2sink.
代入:
J(k)=2k(−coskk+sinkk2)=2(sink−kcosk)k3. J(k) = \frac{2}{k} \left( -\frac{\cos k}{k} + \frac{\sin k}{k^2} \right) = \frac{2 (\sin k - k \cos k)}{k^3}. J(k)=k2(−kcosk+k2sink)=k32(sink−kcosk).
因此:
g^(k)=2J(k)=4(sink−kcosk)k3. \hat{g}(k) = 2J(k) = \frac{4 (\sin k - k \cos k)}{k^3}. g^(k)=2J(k)=k34(sink−kcosk).
解为:
u(x,y)=12π∫−∞∞4(sink−kcosk)k3sinh(kx)sinh(k)eikydk. u(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{4 (\sin k - k \cos k)}{k^3} \frac{\sinh(k x)}{\sinh(k)} e^{i k y} dk. u(x,y)=2π1∫−∞∞k34(sink−kcosk)sinh(k)sinh(kx)eikydk.
被积函数是偶函数(因 g^(k) \hat{g}(k) g^(k) 和 sinh(kx)sinh(k) \frac{\sinh(k x)}{\sinh(k)} sinh(k)sinh(kx) 均为偶函数),且虚部积分为零,故可简化为:
u(x,y)=1π∫0∞4(sink−kcosk)k3sinh(kx)sinh(k)cos(ky)dk. u(x, y) = \frac{1}{\pi} \int_{0}^{\infty} \frac{4 (\sin k - k \cos k)}{k^3} \frac{\sinh(k x)}{\sinh(k)} \cos(k y) dk. u(x,y)=π1∫0∞k34(sink−kcosk)sinh(k)sinh(kx)cos(ky)dk.
最终解为:
u(x,y)=4π∫0∞sink−kcoskk3sinh(kx)sinhkcos(ky) dk \boxed{u(x,y) = \dfrac{4}{\pi} \int_{0}^{\infty} \dfrac{\sin k - k \cos k}{k^{3}} \dfrac{\sinh (k x)}{\sinh k} \cos (k y) \, dk} u(x,y)=π4∫0∞k3sink−kcosksinhksinh(kx)cos(ky)dk
其中 0<x<1 0 < x < 1 0<x<1, y∈R y \in \mathbb{R} y∈R。此解满足 Laplace 方程、边界条件及有界性要求 max∣u∣<∞ \max |u| < \infty max∣u∣<∞,并以傅里叶积分形式表示。