当前位置: 首页 > news >正文

RAG全流程详解:原理、步骤与实战技术推荐

随着大语言模型(LLM)技术的迅猛发展,单纯依赖模型内部知识回答问题,往往容易出现“知识盲区”或“幻觉”现象。**RAG(Retrieval-Augmented Generation,检索增强生成)**成为当前解决这类问题的主流方案之一。

本文将从零开始,全面介绍RAG的工作流程、关键步骤的具体内容和实际应用中推荐的技术及工具,助你快速理解并搭建高效的RAG系统。

什么是RAG?

RAG的核心思想是:在生成回答之前,先从外部知识库中检索相关信息,再将检索到的内容与用户问题一同输入大语言模型,生成基于知识的高质量回答。

它结合了信息检索(IR)和生成模型的优势,既提升了回答的准确性,也增加了系统的可解释性。

RAG的完整流程

用户提问↓
查询理解(意图识别、实体识别、查询扩写)↓
检索(向量检索、关键词检索、混合检索)↓
检索结果后处理(Cross-Encoder重排序、过滤、压缩)↓
上下文构造(拼接问题和相关文档)↓
大语言模型生成答案↓
答案评估与优化(可选)

详细步骤解析

1. 查询理解

目标: 理解用户提问的意图,抽取关键实体,优化检索表达。

  • 意图识别:判断问题类别(如定义、操作流程、对比等),为后续检索调整策略。

  • 实体识别:抽取核心词汇、专有名词(产品名、日期、地名等)。

  • 查询扩写:自动补充同义词或相关词,提升检索召回。

常用技术和工具:

  • 语言模型微调分类器(如BERT、GPT系列)

  • 开源工具:SpaCy、HanLP、LlamaIndex的实体识别模块

  • 零样本分类与重写链(LangChain的PromptChain)

2. 检索阶段

目标: 从知识库中找到与问题最相关的文本片段。

  • 向量检索:基于文本嵌入向量,计算语义相似度。

  • 关键词检索:传统基于关键词匹配和布尔逻辑的搜索。

  • 混合检索:结合关键词和向量检索,提高召回率。

技术推荐:

  • 向量库:FAISS、Qdrant、Weaviate、Chroma

  • Embedding模型:OpenAI Embedding、百度BGE、GTE、sentence-transformers

  • 关键词搜索引擎:Elasticsearch、Whoosh

3. 检索结果后处理

目标: 提高检索内容质量,控制上下文长度。

  • Cross-Encoder Reranker(精排):使用MiniLM、BGE Reranker等模型对Top-K候选文档重新排序,准确选出最相关内容。

  • 过滤:去除无关或重复片段。

  • 摘要压缩:用LLM对文档做摘要,减少冗余信息。

技术推荐:

  • MiniLM(cross-encoder/ms-marco-MiniLM-L-6-v2

  • BGE Reranker(百度开源)

  • LlamaIndex中的Rerank和ContextCompressor模块

  • LangChain的CohereRerank

4. 上下文构造

目标: 将用户问题和检索到的文档内容拼接成Prompt,供大模型生成。

  • 格式设计应清晰,通常包括角色设定、问题描述、上下文内容

  • 控制上下文长度,避免超过模型最大输入限制

  • 提示设计可以指定回答风格、格式(如JSON、步骤列表等)

示例模板:

你是一位专业的财务顾问,请根据以下内容回答问题:问题:
{user_question}相关信息:
1. {chunk1}
2. {chunk2}
...请详细回答。

技术推荐:

  • LangChain的PromptTemplate和ChatPromptTemplate

  • LlamaIndex的PromptHelper

5. 大语言模型生成答案

目标: 结合上下文,生成准确、自然的回答。

  • 选择适合业务需求的模型(本地开源或API)

  • 对模型参数(temperature、max tokens等)进行调优

  • 支持多轮对话时,构建对话历史

推荐模型:

  • OpenAI GPT系列(如GPT-4o、GPT-4)

  • 开源模型:Mistral-7B、Qwen-7B、Mixtral-8B、ChatGLM、BloomZ等

  • 支持微调的基础模型,结合LoRA轻量调优

6. 答案评估与优化(可选)

目标: 自动评估生成结果的准确性、完整性和可读性,辅助迭代优化。

  • 使用LLM进行faithfulness(忠实度)评估

  • 基于指标(ROUGE、BLEU、F1)结合人工标注

  • 实现自动化的评测流水线(如RAGAS、QAEvalChain)

推荐工具:

  • LlamaIndex Eval模块

  • LangChain Eval

  • 结合GPT-4做自动评分

实践中推荐的技术框架和工具

环节推荐技术和库
查询理解SpaCy、HanLP、LangChain、LlamaIndex
向量检索FAISS、Qdrant、Weaviate、Chroma
EmbeddingOpenAI Embedding、BGE、sentence-transformers
精排MiniLM Cross-Encoder、BGE Reranker、Cohere Rerank
Prompt构造LangChain PromptTemplate、LlamaIndex PromptHelper
生成模型OpenAI GPT系列、本地 Mistral、Qwen等
答案评估LlamaIndex Eval、LangChain Eval、RAGAS

总结

RAG通过将检索与生成结合,显著提升了大语言模型回答问题的准确性和实用性。掌握每个步骤的核心要点和最佳实践,能够帮助你快速搭建适合自己业务场景的智能问答系统。

  • 预处理提升检索精度

  • 精排提高相关性和忠实度

  • 灵活Prompt设计引导模型生成

  • 自动评估驱动持续优化

相关文章:

  • 15-C#的scottplot控件库绘制曲线图
  • 免费Excel插件合集 数据处理效率翻倍工具
  • 机器学习8——神经网络下
  • X-Search:Spring AI实现的AI智能搜索
  • 协作机器人优化自动化工作流程,提升工作效率
  • HTTP中常见的Content-Type
  • RabbitMQ 高可用集群设计与消息幂等性实战指南
  • C#写破解rar文件密码例程
  • [C语言]typedef关键字详解
  • documents4j导出pdf
  • 垃圾收集相关算法Test
  • PowerBi 巧用UNICHAR(8203)实现自定义排序
  • flask使用-链接mongoDB
  • Docker镜像制作案例
  • stm32 USART串口协议与外设(程序)——江协教程踩坑经验分享
  • 万兴喵影Filmora AI Video v14.7.03国际高级版,AI视频剪辑全能工具,一键专业级创作​
  • 【数据挖掘】聚类算法学习—K-Means
  • Stable Diffusion 项目实战落地:从0到1 掌握ControlNet:打造光影文字 第二篇 - 野外光影字
  • MATLAB GUI界面设计 第六章——常用库中的其它组件
  • 2.安装Docker