当前位置: 首页 > news >正文

打印Yolo预训练模型的所有类别及对应的id

有时候我们可能只需要用yolo模型检测个别类别,并显示,这就需要知道id,以下代码可打印出


from ultralytics import YOLO# 加载模型
model = YOLO('yolo11x.pt')# 打印所有类别名称及其对应的ID
print(model.names)

{0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}

例如桔子的id是49

from ultralytics import YOLO
import cv2# 加载模型
model = YOLO('yolo11x.pt')# 运行预测,仅检测桔子(假设桔子的类别ID为49,请根据实际模型调整)
results = model.predict("d.jpg", imgsz=640, save=False, device=0, classes=[49])# 获取第一个结果对象
result = results[0]# 获取检测结果图像(自动过滤非指定类别)
result_image = result.plot()# 判断是否检测到桔子
if len(result.boxes) == 0:print("no orange")# 可以在图像上添加文字提示cv2.putText(result_image, "no orange", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
else:print(f"Detected {len(result.boxes)} oranges")# 显示和保存结果
cv2.imshow('Detection Result', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite('dec.jpg', result_image)

 yolo11x.pt比yolo11n.pt 检测慢,但要更精确

相关文章:

  • 基于Unsloth框架快速微调Qwen3-14B模型的全面指南,包括Unsloth框架技术原理与微调代码实现
  • jenkins报错java.lang.OutOfMemoryError: Java heap space
  • 基于bp神经网络的adp算法
  • 创建型设计模式之Singleton(单例)设计模式
  • SMME 2025:创新海洋工程模式,迎接未来挑战
  • Android Compose开发架构选择指南:单Activity vs 多Activity
  • 银河麒麟V10通过制作rpm包升级httpd、php软件修复漏洞
  • Python 训练营打卡 Day 38
  • 浅谈国企数字化转型
  • Jenkins-Pipeline:学习笔记
  • 什么是软件的生命周期,以及常见的开发测试模型
  • 电脑软件管家 免安装便携 四十多种功能系统优化”“磁盘清理”“隐私保护
  • 【行动指南】大一如何高效备考java
  • 密钥管理系统在存储加密场景中的深度实践:以TDE透明加密守护文件服务器安全
  • 十六进制数据转换为对应的字符串
  • 2025.5.23 【ZR NOI模拟赛 T3】高速公路 题解(容斥,高维前缀和,性质)
  • 精准耐用的工业流量管家 格恩朗金属管浮子流量计
  • MySQL OCP 与 Oracle OCP 认证,怎么选?
  • 生物化学:药品药物 营养和补充剂信息 第三方认证信息 常见误区 汇总
  • 零滑点期货跟单软件在小恒指交易中的作用。
  • 嘉兴平湖网站建设/一个网站可以优化多少关键词
  • wordpress 去掉index.php/南京seo顾问
  • 西安旅游网站建设/如何推广公众号
  • 深圳营销网站建站公司/鸡西网站seo
  • 品牌网站建设需要哪些规划/适合成人参加的培训班
  • 绿色网站配色/网站快速排名优化报价